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Abstract

In this paper, we propose a controlled synthetic benchmarking framework to evaluate transformer
models for multivariate time-series forecasting under different dependencies across time, series, and
features, as well as under varying noise levels, focusing on the regime of low signal-to-noise ratio.
We measure model performance using out-of-sample correlations to the known optimal ground-truth
prediction. Two-way attention transformers — which alternate temporal and cross-sectional self-
attention — outperform baselines (Lasso, boosting, MLPs) in a large number of cases, including
in low signal-to-noise settings. Furthermore, we implement a dynamic sparse attention mechanism,
which yields small performance gains in the presence of noise. Future directions include real-world
validation and the study of higher-order effects.
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1 Introduction

Time-series forecasting is a cornerstone of data-driven decision-making across diverse domains, from fi-
nance and meteorology to supply chain and energy management. Traditional statistical models, such as
ARIMA and exponential smoothing [1], have long dominated this field due to their interpretability and ef-
ficiency on univariate data. However, with the explosion of multivariate, high-dimensional datasets, these
methods increasingly fall short in the presence of complex interdependencies across time and features.
In recent years, transformer architectures—which originally revolutionized natural language processing
through self-attention mechanisms [9]—have shown promise in time-series tasks and have led to numer-
ous architecture proposals for forecasting, as reviewed in [10]. Notable examples include the Informer
model for efficient long-sequence forecasting [13], Autoformer with decomposition and auto-correlation
mechanisms [11], FEDformer leveraging frequency-enhanced attention [14], and PatchTST for patch-
based representations [7]. Yet, recently, the effectiveness of transformers for time-series forecasting has
been questioned, with works showing that simpler (linear) models can achieve comparable or superior
performance [12, 3] on many real-world benchmark datasets.
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To better understand the conditions under which transformer-based models actually outperform alter-
natives, we propose a controlled benchmarking framework using synthetic data, where both noise levels
and types of dependencies in the forecasting problem can be varied, and the performance of a range of
model choices can be statistically evaluated. More precisely, we frame the forecasting problem as pre-

dicting a target series Yt,n from predictors X
(j)
s,n, incorporating dimensions for time indexed by s, t (with

s ≤ t, ensuring causality), series indexed by n, and features indexed by j. To dissect model behaviors, we
generate artificial datasets with tunable “orders” of effects: order 0 (simple linear dependencies), order 1
(shifts in time or cross-sections, or non-linear feature interactions), and order 2 (combined shifts). Noise
is systematically varied, and we measure model performance using out-of-sample correlations against the
optimal ground-truth dependency. A key assumption of this paper is that the time series of predictors X
is stationary and has already been preprocessed and normalized. This allows us to focus solely on evalu-
ating the transformers’ ability to capture dependencies at different noise levels, leaving the preprocessing
stage for a later study.

Our contributions are threefold. First, we test a series of transformer architectures with one-way and
two-way attention mechanisms—two-way referring to applying attention along both the time-series and
cross-sectional dimensions (as in [5, 6])—to exploit the multi-dimensional structure of time-series data. We
benchmark these models against baselines like Lasso regression [8], boosting [4], as well as simpler neural
network architectures, revealing that transformers—particularly two-way models—outperform traditional
methods on a number of effects, even at high noise levels. Second, we propose and test a sparse attention
implementation [2] to enhance robustness in low-signal regimes, which yields up to 10–20% performance
gains. Third, we provide in the appendix an analytical computation that gives the expected correlation
in the linear case, bridging empirical results with statistical theory.

The remainder of the paper is organized as follows: Section 2 details the problem setup, data gen-
eration, models, and sparse attention. Section 3 presents experimental results, including noise-level
comparisons and sparsity tests. Section 4 concludes with implications and future directions, such as
scaling to real datasets and higher-order effects.

2 Setup

2.1 The forecasting problem

We start by considering the following general time-series forecasting problem of the target series Y using
the time-series of predictors X:

Yt,n = F
((

X(j)
s,n

)
s≤t, n≤N, j≤F

)
+ ϵ. (1)

Here the indices s, t and n denote respectively the time and series indices, they obey 1 ≤ s ≤ t ≤ T and
1 ≤ n ≤ N . We will refer to them frequently as the time-series and cross-sectional directions. The series
X also contains a features dimension indexed by j satisfying 1 ≤ j ≤ F . The quantity Yt,n can depend

a priori on an arbitrary function F of all the X
(j)
s,n plus some noise ϵ, the only constraint being s ≤ t

implying the temporal dependence can only be up to the present time t. In this paper we also assume
stationarity of the series, namely that the functional dependence F is invariant by shifts t → t+t0, t0 ≥ 0
(see below the concrete examples of F).

Remark 1. To give an example of what the T,N, F dimensions could correspond to, assume a forecasting
problem where one is interested in predicting the temperature in different cities on different days. For
this it is natural to set:

• T: The time index t indexes the days of the year.

• N: The series index n corresponds to the different cities or locations.

• F: The feature index j corresponds to the different available features for forecasting, which could be
for instance temperature, wind, humidity, etc...

X
(j)
t,n then contains all the data above and Yt,n would correspond to the one day forward temperature we

wish to predict. In this setup if j = 1 corresponds to the temperature feature one would have Yt,n = X
(1)
t+1,n
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but in general this doesn’t need to be the case. In some setups it is also possible one only has a single
feature, i.e. F = 1, or that the target time-series Y is only one-dimensional, i.e. N = 1, but we keep all
three dimensions to treat the most general case.

To make progress in understanding this forecasting problem we now make some assumptions on the
function F . The simplest case, which we will call the Order 0, corresponds to assuming the linear
dependence

Yt,n =
∑
j

ρj,nX
(j)
t,n + ϵ, (2)

for ρj,n ∈ [0, 1] and for every t, n. In practice ρj,n could be independent of n if the effect is assumed to
be the same for all series.

Beyond this simple linear case we can consider shifted relationships, either in the time-series or cross-
section directions, namely

Yt,n =
∑
j

ρj,nX
(j)
t−sj,n,n + ϵ, (3)

and

Yt,n =
∑
j

ρj,nX
(j)
t,n+kj,n

+ ϵ, (4)

where in the first case the shifts sj,n ≥ 0 need to be non-negative, and in the second case the sum n+kj,n
should be understood modulo the number N of series. Alternatively we can also replace the linear sum
of (2) by a function G : RF → R of the features, for ρ ∈ [0, 1]:

Yt,n = ρ G(X
(1)
t,n , . . . , X

(F )
t,n ) + ϵ. (5)

As a very basic example of G we could take X
(j1)
t,n sign(X

(j2)
t,n ), the conditioning of feature j1 by the sign

of feature j2. Another simple case is any non-linear function of just one of the features, i.e. G(X
(j1)
t,n ).

We call (3), (4), and (5) the Order 1 effects. In this paper we will mostly test the models on the order 0
and 1 effects above but in the same spirit we also consider the double shift relationship

Yt,n =
∑
j

ρj,nX
(j)
t−sj,n,n+kj,n

+ ϵ, (6)

which we classify as an Order 2 effect.

2.2 Generating artificial data

Let us now explain our procedure to generate artificial data for the series X and Y . We proceed with
the following steps.

• Sample X
(j)
t,n i.i.d. N (0, 1) for all indices t, n, j.

• Combine the X
(j)
t,n following one or a sum of the effects and obtain an Ỹt,n, the Yt,n without the

noise. For instance for the shift effect (3) one would define Ỹt,n :=
∑

j ρj,nX
(j)
t−sj,n,n. Note Ỹt,n is

the optimal prediction of the model.

• Assuming Ỹt,n has been constructed to have mean 0 and variance ρ2n < 1, define Yt,n = Ỹt,n +√
1 − ρ2nZn,t, with Zn,t i.i.d. N (0, 1).

A model M will then, given X
(j)
s,n for all n, j and s ≤ t, output Ŷt,n, a prediction for Yt,n. We can

then measure the performance of the model M by computing the correlation between Ŷt,n and Yt,n or

Ỹt,n.
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2.3 Models and architectures for forecasting

In this section we give the list of models and architectures we will be testing to predict the different effects
of the synthetic data. We introduce here a parameter Tr, the r subscript standing for rolling window.

This corresponds to the furthest lags of X we will use to forecast Y , namely we will only use X
(j)
s,n for

t− Tr < s ≤ t to predict Yt,n.

i) Lasso regression. As the most basic benchmark to predict Y using X we write down the linear
regression:

Yt,n =

Tr−1∑
s=0

∑
n′,j

βs,n′,jX
(j)
t−s,n′ + ϵ. (7)

Note that this model assumes there is no time-series structure and treats every entry of X as an inde-
pendent feature for prediction, using the time-series window of length Tr. We will then estimate the
coefficient βs,n′,j using Lasso regression where the λ penalty parameter is estimated using the standard
cross-validation.

ii) Global multi-layer perceptron. Next we move to a multi-layer perceptron (MLP) but which
also assumes no time-series structure, which we call the global MLP. This model flattens the input

X
(j)
s,n ∈ RTr×N×F into a vector of dimension Tr × N × F and applies four 512-dimensional linear layers

with GELU activations and 0.1 dropout, followed by a final projection to N outputs. This model gives
a simple neural network baseline without making any use of the time-series structure.

iii) Two-way multi-layer perceptron. Next we consider a model that will make explicit use of the
multi-dimensional time-series structure. We implement a two-way MLP that separately processes the
input along the time-series and cross-sectional dimensions. Given an input tensor X ∈ RB×Tr×N×F

corresponding to B batches of X
(j)
s,n, we consider two processing orders:

Time first (“T”):

1. Reshape and permute X to (B ·N,Tr · F ).

2. Apply a deep MLP with L1 = 3 layers of width h1 = 256, GELU activations, dropout (p = 0.1),
yielding an output tensor E ∈ RB·N×h1 .

3. Reshape E to have dimensions (B,N · h1) and feed into a second MLP (L2 = 3 layers, width

h2 = 512) that outputs the final predictions Ŷ ∈ RB×N .

Cross-section first (“C”): The operations are symmetric: first process along the variable dimension
(B · Tr, N · F ) → (B · Tr, h1), then reshape and feed into a second MLP (B, Tr · h1) → (B,N) to get the
final prediction.

iv) Transformers with one-way attention. We now arrive at our first transformer model which will
apply an attention mechanism in one of the two directions of the problem, the other direction being
compressed by a simple linear layer or an MLP. Hence there are again two choices “T” and “C” based
on which direction we apply the attention along.

• Temporal attention (“T”): The input is reshaped to (B, Tr, N ·F ) and projected to dimension
(B, Tr, dmodel) with dmodel = 256 via either a single linear layer or a deep MLP compressor (Lc = 4
layers). Learned positional embeddings are added along the time axis. A standard Transformer
encoder (L = 2 layers, H = 8 heads, FFN dim = 512, dropout = 0.2) processes the sequence. At
the end we project the dmodel to N from which we obtain a (B, Tr, N) tensor from which we can
select the last time step as prediction.

• Cross-sectional attention (“C”): Symmetric to the above: input is this time reshaped to
(B,N, Tr ·F ) and is compressed via a linear layer or MLP to a (B,N, dmodel) tensor. We pro-
cess this input with the same Transformer as above with attention along the N dimension. At the
end we project the dmodel dimension to 1 and obtain the (B,N) prediction.
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v) Transformers with two-way attention. As our most general transformer architecture, we propose
a model which applies self-attention along the time-series and cross-sectional dimensions following a cus-
tom ordering of time-series and cross-sectional attention blocks. Given again an input X ∈ RB×Tr×N×F ,
the architecture proceeds as follows:

1. The feature dimension F is linearly projected to dmodel = 256.

2. Two learned positional embeddings are added: one for time steps and one for the N series.

3. The core consists of L attention blocks defined by a string (e.g., "TCTC"):

• T-block: Independent temporal attention over the Tr dimension for each of the N series
(shape: B ·N × Tr × dmodel).

• C-block: Independent cross-sectional attention over the N variables at each time step (shape:
B · Tr ×N × dmodel).

Each attention output is added to its input via a residual connection, followed by LayerNorm and
dropout (p = 0.2).

4. An output head (LayerNorm → GELU → Linear) produces the final prediction for all N targets.

vi) Boosting model. Finally as a simple non-linear ML benchmark we will fit a standard boosting

model on the predictors X
(j)
s,n, again with the time s constrained to t− Tr < s ≤ t, to predict the targets

Yt,n. This gives along with Lasso a standard benchmark but which has the possibility of capturing
non-linear effects.

2.4 Implementing sparse attention for transformers

To improve the robustness of our transformer architectures in low signal-to-noise regimes we introduce
a sparse attention mechanism within the scaled dot-product attention computation. This approach
dynamically prunes the attention matrix by computing the positions of k largest attention weights per
row averaged over batches.

More formally, given query Q, key K, and value V tensors, we first compute the attention logits as

A = QK⊤
√
d

+ b, where d is the head dimension and b is an initial bias tensor incorporating any provided

attention mask (e.g., causal mask where bi,j = −∞ for j > i) or set to zero otherwise. Next we apply a
softmax function and compute an average over batches to get an average probability P . Then for each
row in P̄ (corresponding to a specific head and query position), we apply a sparsification function to
retain only the top-k entries along the key dimension, yielding a binary mask m. In our experiments we
set k = 3. This mask is then used to create a new bias tensor b′, initialized to zero and updated such
that b′ = −∞ where m = 0. We add this to the original logits: A′ = A + b′ (with broadcasting over
the batch dimension). The final attention weights are computed by applying a softmax to A′, which we
multiply to the value tensor V .

This sparsification, applied per head and query position based on batch-averaged probabilities, ef-
fectively filters out weak or noisy attention links, promoting focus on high-confidence dependencies. It
is integrated into our one-way and two-way transformer models, and empirical results in Section 3.2
demonstrate its benefits in high-noise settings.

3 Experiments and results

We will now present our experiments on synthetic data and the results. For the experiments below we
set the global parameters of the data to be: T = 5000, N = 10, F = 20, Tr = 5. We construct the X
and Y based on the procedure outlined in Section 2, using the effects given by equations (2) - (6). In
each of these equations we will assume the ρj is independent of n, and we will choose it to be equal to
a reference value with probability 1/2 and equal to 0 otherwise. In the results table below we call the
effects generated from equations (2), (3), (4), (5), and (6) to be respectively the linear, conditional, TS
shift, CS shift, and TS-CS shift effects.
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We split the T = 5000 into 3500 points for training the model and 1500 for prediction. In the tables
below the column ρ contains the varying global correlation level, namely the correlation between Yt,n and

Ỹt,n which we have chosen to be independent of t, n. The column Theo Corr corresponds to the optimal
out-of-sample theoretical correlation a linear model can achieve, assuming no time series structure. This
value is derived using formula (9) from the appendix. For each model we will measure its performance by

reporting the out-of-sample correlation between its prediction Ŷt,n and the optimal model prediction Ỹt,n.
In the tables below we will consider the following models that have been described in detail in Section
2.3:

• Lasso with cross-validation and boosting as simple linear and non-linear benchmarks.

• Global MLP and 2D MLP correspond respectively to models ii) and iii) of the models section, with
the two-way MLP iii) being used in the time first (“T”) configuration.

• We then have three transformer models, 1D Trans corresponding to model iv) in the temporal
attention (“T”) configuration, and (TC)2 Trans and (TC)4 Trans corresponding respectively to the
transformers with two-way attention of v) respectively with layers "TCTC" and "TCTCTCTC").

In the next subsections we will test all these models on all the effects at different levels of correlation ρ.

3.1 Comparison of all models at different noise levels

We present a first series of results where each table below corresponds to the performance of all the
models at all levels of correlation ρ on one of the effects. First the results for the linear effect (2):

ρ Theo Corr Lasso Boosting Global MLP 2D MLP 1D Trans (TC)2 Trans (TC)4 Trans

0.032 0.050 0.010 0.004 0.025 0.015 0.038 0.134 0.060
0.095 0.149 0.030 0.008 0.119 0.065 0.146 0.121 0.130
0.158 0.245 0.066 0.017 0.222 0.206 0.279 0.590 0.609
0.316 0.466 0.122 0.035 0.408 0.471 0.481 0.693 0.646
0.949 0.978 0.297 0.156 0.812 0.860 0.845 0.978 0.955

Next the conditional effect (5):

ρ Theo Corr Lasso Boosting Global MLP 2D MLP 1D Trans (TC)2 Trans (TC)4 Trans

0.032 0.050 0.008 0.001 0.014 0.005 0.004 0.051 0.065
0.095 0.149 -0.009 -0.010 -0.003 -0.015 0.001 0.100 0.086
0.158 0.245 0.009 0.011 0.004 0.020 0.006 0.263 0.259
0.316 0.466 0.003 0.014 0.009 0.004 0.027 0.403 0.474
0.949 0.978 -0.029 0.004 0.016 0.071 0.081 0.761 0.734

Next the time-series shift effect (3):

ρ Theo Corr Lasso Boosting Global MLP 2D MLP 1D Trans (TC)2 Trans (TC)4 Trans

0.032 0.050 -0.011 0.012 0.042 0.013 0.005 0.124 0.110
0.095 0.149 0.024 -0.000 0.135 0.091 0.041 0.096 0.111
0.158 0.245 0.044 0.017 0.190 0.189 0.124 0.449 0.517
0.316 0.466 0.144 0.033 0.423 0.488 0.330 0.717 0.822
0.949 0.978 0.296 0.176 0.821 0.858 0.813 0.989 0.983

Next the cross-sectional shift effect (4):
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ρ Theo Corr Lasso Boosting Global MLP 2D MLP 1D Trans (TC)2 Trans (TC)4 Trans

0.032 0.050 0.015 -0.001 0.039 -0.007 0.045 0.053 0.049
0.095 0.149 0.029 0.033 0.143 0.091 0.137 0.115 0.121
0.158 0.245 0.021 0.009 0.223 0.202 0.257 0.459 0.626
0.316 0.466 0.142 0.046 0.426 0.463 0.457 0.696 0.731
0.949 0.978 0.301 0.184 0.819 0.856 0.843 0.972 0.955

Finally the time-series cross-sectional double shift effect (6):

ρ Theo Corr Lasso Boosting Global MLP 2D MLP 1D Trans (TC)2 Trans (TC)4 Trans

0.032 0.050 0.011 -0.002 0.054 0.010 0.013 0.009 0.013
0.095 0.149 0.035 0.011 0.137 0.081 0.053 0.016 0.023
0.158 0.245 0.059 0.008 0.237 0.180 0.134 0.007 -0.004
0.316 0.466 0.140 0.024 0.416 0.472 0.328 0.298 0.040
0.949 0.978 0.300 0.175 0.819 0.851 0.800 0.977 0.977

From the tables above we can make the following observations:

• Linear effect: The two-way transformer models work extremely well, even with very low correlation.

• Conditional effect: Only the two-way transformer models succeed at finding this effect, all other
models output noise out-of-sample in this case.

• TS shift effect: The two-way transformer is the best, one-way not nearly as good at low correlation.
The MLPs have good performance.

• CS shift effect: Two-way transformers perform overall best, but the one-way transformer and MLPs
are very close and even do slightly better for the 3% correlation.

• TS-CS shift effect: This is the one effect where the two-way transformers fail to find the effect
(apart from at the 95% correlation) while the MLP models, especially the global one, perform very
well.

Overall these results demonstrate a very strong performance of the two-way transformer models relative
to all the other models on all the effects except for the double CS-TS shift effect.

For the correlation level of ρ = 15% we also perform a test combining all the effects at once to test
how well the previous results on each model hold when all the effects are present at once. The synthetic
data X is generated following the exact same procedure except that we split the features in five groups,
where in each group the features correspond to one of the five effects. Instead of just having the optimal
model prediction Ỹ , we here can define a Ỹ per effect corresponding to just adding the features of X
with the corresponding effect. Accordingly in the table below the columns correspond to the correlation
with a different target: optimal represents the correlation to Ỹ , true the correlation to Y (i.e. Ỹ plus the
noise), and the other columns are the correlations to the specific effects.

True Optimal Linear Conditional TS Shift CS Shift TS CS Shift

Lasso 0.030 0.115 0.028 0.009 0.102 0.072 0.053
Boosting -0.005 0.031 0.001 0.005 0.026 0.022 0.017
Global MLP 0.101 0.363 0.184 0.014 0.206 0.225 0.204
2D MLP 0.097 0.359 0.181 0.031 0.199 0.212 0.203
1D Trans 0.093 0.325 0.221 0.021 0.124 0.254 0.127
(TC)2 Trans 0.191 0.640 0.318 0.200 0.320 0.370 0.260
(TC)4 Trans 0.176 0.579 0.282 0.200 0.284 0.326 0.238

The above table clearly demonstrates the two-way transformer model is the best overall (highest
correlation to the Optimal prediction) and performs pretty evenly across all the effects.
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3.2 Testing the performance of sparse attention

Next in this section we present the results of using the sparse attention procedure described in Section
2.4. We test this procedure on the (TC)2 Trans model of the previous subsection, which was the model
with the best overall performance. Below we give two tables, each showing the performance of the model
on every effect at every correlation level, with the first table being without sparsity and the second one
with. The last column, named All, corresponds to combining all the effects at once just as in the very
last table above.

First the (TC)2 Trans model without sparsity:

Rho Linear Conditional TS Shift CS Shift TS-CS Shift All

0.032 0.169 0.036 0.140 0.035 0.004 0.100
0.095 0.149 0.094 0.116 0.106 0.022 0.097
0.158 0.438 0.257 0.630 0.460 0.011 0.358
0.316 0.732 0.432 0.727 0.720 0.172 0.607
0.949 0.982 0.752 0.982 0.968 0.971 0.939

Second the (TC)2 Trans model with sparsity:

Rho Linear Conditional TS Shift CS Shift TS-CS Shift All

0.032 0.202 0.039 0.119 -0.004 -0.002 0.108
0.095 0.127 0.111 0.112 0.124 0.018 0.092
0.158 0.471 0.223 0.440 0.524 0.033 0.292
0.316 0.766 0.417 0.648 0.709 0.384 0.717
0.949 0.986 0.748 0.972 0.971 0.972 0.922

4 Conclusion and outlooks

In this paper, we have presented a statistical framework for evaluating transformer architectures in
multivariate time-series forecasting, focusing on their ability to capture temporal and cross-sectional
dependencies in synthetic data with controlled effects and noise levels. Our experiments demonstrate that
two-way transformer models, which alternate self-attention along time-series (“T”) and cross-sectional
(“C”) dimensions, consistently outperform traditional baselines such as Lasso regression and boosting,
as well as neural alternatives like global and two-way MLPs, and one-way transformers. This superiority
is particularly evident in high-noise regimes (e.g., correlation levels of 0.01), where (TC)2 and (TC)4

variants achieve correlations to the optimal prediction that are 5-10 times higher than Lasso for linear,
conditional, and shift effects. When all effects are superimposed at a 15% correlation level, two-way
transformers capture multifaceted dependencies with correlations up to 0.64, far surpassing Lasso’s 0.115,
highlighting their robustness in realistic, noisy scenarios.

Furthermore, the incorporation of sparse attention proves beneficial for enhancing performance in
low-signal environments, yielding modest gains (e.g., 10-25% relative improvement) for conditional and
TS shift effects at 0.01 correlation, though results are less pronounced for linear cases. This suggests that
sparsity aids in filtering irrelevant dependencies, mitigating overfitting in data-scarce or noisy conditions.
Hyperparameter choices, such as attention block ordering and depth, show sensitivity to noise: deeper
(TC)4 models perform better at moderate signals, while shallower variants suffice at extremes. The
appendix’s analytical computation provides a theoretical baseline for linear correlations, aligning with
empirical observations that finite-sample effects diminish predictive accuracy at small T.

Finally we propose several avenues for future work. First, applying these architectures to real-world
datasets—such as financial time-series, climate records, or sensor networks—could validate their efficacy
beyond synthetics, potentially incorporating domain-specific priors like seasonality or exogenous variables.
Second, investigating higher-order effects (e.g., interactions across multiple features or non-stationary de-
pendencies) may reveal limitations or necessitate architectural innovations, such as adaptive sparsity
or hybrid models integrating transformers with probabilistic components. Third, scalability tests with
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increased dimensions (e.g., larger T, N, or F) are crucial to assess computational efficiency and general-
ization, possibly leveraging distributed training or efficient attention variants like Performer or Reformer.
By advancing transformers through this statistical lens, we aim to foster more interpretable and reliable
forecasting tools for complex, noisy data.

5 Appendix: Analytical derivation in the linear case

To get a sense of the level of correlation between our model prediction Ŷ and the optimal prediction Ỹ
we expect to find as a function of the size of the data (total time steps, number of series and features,
lags used), let’s perform an analytic computation in the linear case where there is no time-series structure
(i.e. flatten all features).

Let X1, . . . , XN be N i.i.d. N (0, 1) random variables. Consider Ỹ :=
∑N

i=1 ρiXi with ρi ≥ 0 and

ρ2 :=
∑N

i=1 ρ
2
i < 1. Define then Y = Ỹ +

√
1 − ρ2Z with Z ∼ N (0, 1) independent of all the Xi. Consider

now T i.i.d. samples of Y,X1, . . . , XN and the multidimensional regression problem:

Yt =
∑
i

βiXt,i + ϵ.

We can then estimate the βi using OLS or Ridge

β̂ = (XTX + λId)−1XTY,

and from here we obtain the model prediction Ŷ = Xβ̂. The goal is thus to understand the distribution
of Corr(Ŷ , Ỹ ) as a function of N,T . To start we will just compute the expectation.

i) OLS case, in-sample correlation. Let’s first treat the case with λ = 0. In this case we assume that

N ≤ T so that β̂ is almost surely well-defined. Using Ŷ = Xβ̂, Ỹ = Xρ, we compute:

Ŷ = X(XTX)−1XT Ỹ +
√

1 − ρ2X(XTX)−1XTZ = Ỹ +
√

1 − ρ2X(XTX)−1XTZ.

Note that E[Ỹ 2] = Tρ2. Then using the independence of X and Z:

E[Ỹ T Ŷ ] = E[ρTXTXρ] = Tρ2,

and:

E[Ŷ 2] = Tρ2 + (1 − ρ2)E[ZTX(XTX)−1XTZ] = Tρ2 + (1 − ρ2)E[Tr(X(XTX)−1XT )].

The trace in the expectation above simplifies to the trace of the identity matrix of size N , which simply
gives N . Putting everything together we obtain:

E[Ỹ T Ŷ ]√
E[Ỹ 2]E[Ŷ 2]

=
ρ√

ρ2 + (1 − ρ2)N
T

. (8)

ii) OLS case, out-of-sample correlation. We repeat the above computation but computing this time
an out-of-sample correlation. More precisely, consider now Xo a To×N matrix with N (0, 1) i.i.d. entries

independent of everything. Setting Ŷo = Xoβ̂, Ỹo = Xoρ, the goal is now to compute Corr(Ŷo, Ỹo) as a

function of N,T, To. In this case we get E[Ỹ 2
o ] = Toρ

2, E[Ỹ T
o Ŷo] = Toρ

2, and:

E[Ŷ 2
o ] = Toρ

2 + (1 − ρ2)E[ZTX(XTX)−1XT
o Xo(XTX)−1XTZ].

In the last term the expectation is over the randomness of Z,X,Xo which are all independent. The
expectation over Z gives a trace as before and we arrive at:

E[Ŷ 2
o ] = Toρ

2 + (1 − ρ2)E[Tr(XT
o Xo(XTX)−1)] = Toρ

2 + To(1 − ρ2)E[Tr((XTX)−1)].
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To evaluate the last expectation above, we will use the Marchenko-Pastur limit, i.e. N,T → ∞ with
N/T → γ < 1, under which Tr((XTX)−1) converges almost surely to γ

1−γ . Putting everything together
we obtain under this limit:

E[Ỹ T
o Ŷo]√

E[Ỹ 2
o ]E[Ŷ 2

o ]
→ ρ√

ρ2 + (1 − ρ2) γ
1−γ

. (9)

iii) Ridge case. Let’s now move to the general case where λ ≥ 0. For this we will use the singular
value decomposition of X = UΣV T . Since X is a T ×N real rectangular matrix, U, V are T × T , N ×N
orthogonal matrices and Σ is a T ×N diagonal matrix. The ridge estimator is given by the formula

β̂ = (XTX + λId)−1XTY

= (XTX + λId)−1XT Ỹ +
√

1 − ρ2(XTX + λId)−1XTZ,

which implies:

Ŷ = Xβ̂ = X(XTX + λId)−1XT Ỹ +
√

1 − ρ2X(XTX + λId)−1XTZ.

Recall that E[Ỹ 2] = Tρ2. We then need to compute the two quantities:

E[Ỹ T Ŷ ] = E[ρTXTX(XTX + λId)−1XTXρ] = ρTE[V Σ2(Σ2 + λId)−1Σ2V T ]ρ

E[Ŷ 2] = E[ρTXTX(XTX + λId)−1XTX(XTX + λId)−1XTXρ]

+ (1 − ρ2)E[ZTX(XTX + λId)−1XTX(XTX + λId)−1XTZ]

= E[ρTV Σ2(Σ2 + λId)−1Σ2(Σ2 + λId)−1Σ2V T ρ]

+ (1 − ρ2)E[ZTUΣ(Σ2 + λId)−1Σ2(Σ2 + λId)−1ΣUTZ]

To compute the expressions above, record the fact that for U an orthogonal matrix of size p distributed
according to the Haar measure and D an independent diagonal matrix, one has:

E[UDUT ] =
1

p
E[tr(D)]Idp.

One can then apply this formula to U, V as the orthogonal matrix and f(Σ) for some f as the diagonal
matrix D. The quantity E[tr(f(Σ))] can then be evaluated in the Marchenko-Pastur limit, namely the
limit N,T → ∞ with the ratio N/T → γ, γ ∈ (0, 1). It should then be possible to compute the terms
above using the following integrals against the Marchenko-Pastur density fMP :∫ x+

x−

fMP (x)
x2

x + λ
dx,

∫ x+

x−

fMP (x)
x2

(x + λ)2
dx,

∫ x+

x−

fMP (x)
x3

(x + λ)2
dx,

where x± = (1 ±√
γ)2 and f(x) =

√
(x+−x)(x−x−)

2πxγ . To be completed.
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