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ABSTRACT. Virasoro conformal blocks are a family of functions that encode the universal structure for 2D
conformal field theory (CFT) in the conformal bootstrap framework. Two of the most basic conformal blocks
are the one for the four-point sphere and for the one-point torus cases. They are defined as power series of
the complex parameter (i.e. the modular parameter) encoding the corresponding marked Riemann surfaces,
which are determined by the Virasoro algebra indexed by a central charge c. Moreover, each marked point
carries a parameter called the external momentum and there is an additional parameter called the internal
momentum. It is a longstanding conjecture that the these two power series have convergence radius 1.
Moreover, they are meromorphic in their internal momentum where the location of the poles are dictated
by the Kac table. In this paper we prove this conjecture when the central charge ¢ > 25 and the external
moments belongs to a certain range. Moreover, we prove Ponsot and Teschner’s formula for the fusion kernel
of the four-point spherical blocks and Teschner’s formula for the modular kernel of the one-point torus block.
These kernel encode the symmetry of the space of conformal blocks with respect to the mapping class group.
Our proof is based on the recently developed conformal bootstrap for Liouville CFT constructed using the
Gaussian multiplicative chaos (GMC). As a byproduct, we derived GMC expression of the four-point sphere
and one-point torus conformal blocks.
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1. INTRODUCTION

A conformal field theory (CFT) is a way to construct random functions on Riemannian manifolds that
transform covariantly under conformal (i.e. angle preserving) mappings. Since the seminal work of Belavin-
Polyakov-Zamolodchikov [BPZ84], two dimensional (2D) CFT has grown into one of the most prominent
branches of theoretical physics, with applications to 2D statistical physics and string theory, as well as far
reaching consequences in mathematics; see e.g. [DFMS97]. The paper [BPZ84] introduced a schematic pro-
gram called the conformal bootstrap to exactly solve correlation functions of a given 2D CFT in terms of
its 3-point sphere correlation functions and certain power series called conformal blocks. These confor-
mal blocks are completely specified by the Virasoro algebra that encodes the infinitesimal local conformal
symmetries, and they only depend on the specific CEFT through a single parameter called the central charge.
Outside of CFT, conformal blocks are related to Nekrasov partition functions in gauge theory via the Alday-
Gaiotto-Tachikawa correspondence [AGT10], solutions to Painlevé-type equations [GIL12], and quantum
Teichmiiller theory and representation of quantum groups [PT99, PT01, TV15], among other things.

In this paper, we prove analyticity and symmetry properties for these conformal blocks in the two most
fundamental cases: the one of the one-point torus and of the four-point sphere. Our proof strategy requires
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the probabilistic construction of the Liouville conformal field theory (LCFT) giving rigorous meaning
to the path integral formalism of quantum field theory on the sphere in [DKRV16] and on other surfaces
in [DRV16, HRV18, GRV19]. The construction is via Gaussian multiplicative chaos (GMC), a random
measure defined by exponentiating the Gaussian free field (see e.g. [RV14, Berl7]). LCFT depends on a
coupling constant v € (0,2) which is in bijection with the central charge ¢ via

2
(1.1) c=1+6Q% € (25,00), whereQZ%Jr?

The conformal bootstrap for Liouville CFT has recently been proved in this probabilistic framework, first
in the case of the Riemann sphere [GKRV20], then for general boundaryless Riemann surfaces [GKRV21],
and lastly in the case of the annulus in [Wu22]. We will take these boundary bootstrap statements as the
starting point of our proofs. We now move to defining the conformal blocks of interest purely in terms of
the Virasoro algebra and stating the main analyticity result for these functions.

1.1. Analyticity of the 4-point spherical and 1-point toric conformal blocks. We start by recalling
the definition of conformal blocks as power series defined in terms of the Virasoro algebra. The Virasoro
algebra Vir with central charge c is the associative algebra with generators {L, }nez and 1 and relations

(1.2) 1L, =L,1 and Ly, L] = (n—m)Lpym + é(n?’ —n)dp,—m1l for m,n € Z.

A sequence of integers v = (1;);>1 is called a Young diagram if the mapping ¢ — v; is non-increasing and if
v; = 0 for 4 sufficiently large. We denote by |v| := .., v; the length of the Young diagram. Given a Young
diagram v we denote -

L,=L, ---L_, and L,=L, ---L,.

For Young diagrams v and v’ satisfying |v| = ||, one can check that (see e.g. Lemma A.2 in [GKRV20])
(1.3) L,L_, 1= a(v,/)Ll.
k>0

where the coefficients ay (v, V') are purely determined by the Virasoro algebra. We yields the dependence of
ax(v,V') on ¢ as we fix the central charge as a globally parameter. The Schapovalov form is then defined as

(1.4) Fa(v,v) = Z ap(v, V) AF.

k>0
For N >0, let Fa n(v,V') = (Fa(v,V'))jy)=|v/|=n- By Kac determinant formula (see [FF83]), the matrix
Fa,n is invertible if and only if A € C is not in the set

c—1

DW.(N):={ — (rb+ sb™1)? : r, s are positive integers such that rs < N},

24
where b satisfies ¢ = 1+ 6(b + b~1)%. Although b has two choices the set DW.(N) is independent of this
choice. The set of degenerate weights of the Virasoro algebra is given by

(1.5) DW. 1= Un>oDW.(N) = {A,, = %

Fix ¢ and as oy, as, ag, a4, P as parameters. Then define the following quantities:

(67 (67 Q2 P2 c—1 P2
Ap = Q-2 Apuip=4 4+ = -
=5 @-7) Q+iP =t YRR

— (rb+sb™1)? : r, s are positive integers}.

For integers n > 0 and Ap ¢ DW_, let

(1.6)
ﬂn(AQ—i-iP;AalaAazaAagaAa4) = Z U(AapAagaAQ-{-iPay)F&;JriP (V7 V/)U(AamAagaAQ-i-iPayl)v
vl lv'[=n
where the sum is over Young diagrams and v(,-,-,-) is given by
k
(1.7) V(AN A ) =T A = A+ AT+ ).

j=1 u<j
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Definition 1.1. The s-channel four-point spherical conformal block is defined as the formal power series

(oo}
,spher n
(1.8) fZiﬁ,Zzz,A%,A% (21 Aq+ip) = Zﬁn(AQ-‘:-iP? Aays Doy Aags Aay)2".

n=0

Remark. In some literature the s-channel block is defined as z2@+ir—8a, ~Aay Fosphere (z; Ag+ip)
al»Aa27Ao¢37Ao¢4 ’ Q+

instead.

The first main result of our paper is to the realization of the four-point spherical conformal block as a
function holomorphic in z in the unit disk, meromorphic in Ag;p with poles at the degenerate weights, for
¢ > 25 and (A, Aoy Ans, Ay, ) in some appropriate range. In our statement below for each A € DW,,
we let m(A) be the cardinality of the set {integers r,s > 1 : S — (rb+ sb™!)? = A} and called it the
multiplicity of A in DW.. When c is such that b? is irrational, then each A € DW, has multiplicity one.

Otherwise there exists degenerates weights with finite multiplicities greater than one.

Theorem 1.2. Fix ¢ > 25 and «y, asg, ag, oy satisfying a; < Q, ay +as > Q, az+aq4 > Q, a3 + oy > Q,
ag + ag > Q. There exists a function F*P(z; A) for complex (z,A) (depending on ¢, Ay, Any, Aay, Ady,)
with the following properties:

(a). FPh(z; A) is analytic in (2, A) for |z| <1 and A ¢ DW,;

(b). For |z0| < L and A, ; € DW,, (A—A,. ;)™Ars) FPh(2: A) is analytic in a neighborhood of (29, A, 4);

(c). %Pph(o; A) =nlB,(A; Anyy Avyy Ay, Ay, ) for A ¢ DW,. with G, in (1.8);

(d). For A, ; € DW,, one has:

Res ]:Sph(z; A) = Ammzm"]ﬁph(z; A_pn)-

=Am,n

We now turn to the definition of the 1-point toric conformal block. For A € C, the Verma module Ma of
highest weight A is a Vir-module defined as follows. There exists a vector va € Ma, called a highest weight
vector, such that

(1.9) L,va =0forn >0 and Lova = Ava.

Moreover, the set of vectors {L_,va} indexed by Young diagrams form a basis of Ma. The action of Vir on
My is given by commuting the action of a generator L,, on a basis vector to create a linear combination of
other basis vectors using the relations (1.2). Given A, Ag, A, the operator product expansion in CFT leads
to a bilinear form (- | -)a on Ma, X Ma, which can be uniquely specified by

(Loyva, | LopLipva,)a = (LnLoyva, [ Logva,)a + (A + v = [7] + (n + 1)A)(L_yva, | Losva,)a;

(1.10) (’UA1 | UA2)A =1.
Now we set w(A, Ay, Ag,v,0) = (L_,va, | L_pva,)a and
(1.11) VVN(A7 Al, Ag) = (w(A, Al, AQ, v, 17))\11|:|17\:N for N > 0.

For fixed Young diagrams v, 7, one can check that w(A, Ay, Ag, v, D) is a polynomial in A, Ay, As. Moreover,
similar to the Shapovalov matrix Fa n, for fixed (A, Ay, Ag), we can view Wy (A, A1, Ag) as a matrix whose
entries are indexed by Young diagrams of length V.

Definition 1.3. The one-point toric conformal block is defined as the formal power series

(1.12) FA (g3 Aquir) = S OT(FAL o WnlBay, Agrir, Agyir))q"-

n=0

We now state the analogue of Theorem 1.2 for the 1-point torus case.

Theorem 1.4. Fix ¢ > 25 and «a € (0,Q). There exists a function F*°"(q; A) for complex (g, A) (depending
on ¢, A,,) with the following properties:

(a). F**(q; A) is analytic in (g, A) for || < 1 and A ¢ DW,;
. For |go| < 1 and A, s € DW,, (A— A, )™(Ars) Ffor(g; A) is analytic in a neighborhood of (go, A s);

)
(¢). £=For(0;A) = nlTr(Fy ), - Wn(Aa,, A, A)) for A ¢ DW,;
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(d). Viewed as a meromorphic function in A € C, F(¢q; A) obeys:

oo

or mnR m,n or 1 _
FgA)= > ¢ P;ip(z)ft (¢ A pmn) +q72n(g) "

n,m=1
1.2. Fusion and modular symmetries. We now give the fusion transformation for the four point sphere

conformal block. It will related the expansion of the conformal block around z =0 and z = 1.

Theorem 1.5. Let z € (0,1), let o satisfy a; < Q, a1 + e > Q, az+ g > Q, a1 + g > Q, as +az > Q
and P € R. Then the following holds

1,002,03,04 a,002,003,004 a1,002,003,004

(113) 1p? f-sphere (Z,P) ( )/Msphere (P P/)(l _Z)%( )2 ]:sphere (1 _ Z,P/)dP,,

2
where C(z) = z(fa1tBas— & )(1 z)( 7 ~8as~Aaz) and where the fusion kernel is given by the formula (3.10).

We also have an analogue result for the one-point torus conformal block. Recall the modular parameter
7 € H. Define ¢ = ¢I"™ and ¢ = e~ 7. Then the following modular transformation relates the values of the
one-point torus block at ¢ and ¢.

Theorem 1.6. For o € (0,Q), g € (0,1), P € R one has
(114) q —-5+3 P? J—_~torus / Mtorus P Pl)q H+3P )2 J—_~toru5( )dp/
where the modular kernel MP(P, P') has expression given by (5.3).

2. BACKGROUND ON LIOUVILLE CONFORMAL FIELD THEORY

Throughout most this section we work on H as our base domain, although by conformal invariance it
would be equivalent to work on the unit disk D or on any simply connected domain. In the last subsection
we repeat all the constructions on the annulus A.

2.1. Gaussian free field and Gaussian multiplicative chaos. Let h be the free boundary Gaussian free
field on the upper half plane H with covariance kernel

(2.1) E[h(x)h(y)] = log +2log fo] + 2log [yl

[z —yllz — 7|
where || := max(|z|,1) and in the sense that E[(h, f)(h,g)] = [[ f(z Yh(y)]g(y)dzdy, for smooth test
functions f and g. Let Py be the law of h, so that PH is a probablhty measure on the negatively indexed
Sobolev space H~!(H). This particular covariance kernel (2.1) corresponds to requiring the field to have
average 0 on the upper-half unit circle.

Given a sample h from Py, let h(z) denote the average of h over {w € H : |w — z| = €}. The associated
quantum area and length measure - also known as Gaussian multiplicative chaos measures - are defined by:

’Y2 ’Y2 o
(2.2) Ap=limez e ® @22 and Lp = lime T ez 3z,
e—0 e—0
These limits hold in probability and against all suitable test functions.

2.2. Probabilistic definition of LCFT correlations on the upper-half plane. Before introducing the
correlation functions, we introduce the Liouville field, possibly with boundary insertions, which is constructed
from the Gaussian free field h.

Definition 2.1 (Liouville field). Let (h,c) be sampled from Py x [e~%¢dc] and set ¢ = h(z) —2Qlog |z|; +c.
We write LFy as the law of ¢, and call a sample from LFy a Liouwville field on H.

Definition 2.2 (Liouville field with insertions). Let (a;,s;) € R x 0H for j =1,..., M, where M > 1 and
the s, are pairwise distinct. Sample (h, ¢) from C{*7°7)7 Py x [¢(3 5 %~ @dc] where

M o i
CH(_Haj7Sj)j _ H |Sj‘;ozj(Q*T]) H e i kG]]—][(S],Sk)'

j=1 1<j<k<M
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Let ¢(2) = h(z) —2Qlog |z|+ + ZJMZI % Gu(z,s5) +c. We write LF](}Haj’Sj)j for the law of ¢ and call a sample
from LF]g_Haj’s")j the Liouville field on H with insertions (o, $;)1<j<m-

We can also define Liouville fields with an insertion at co. Fix z € (0,1). We will need the case

LE§ 0 (@22 (0D (0020) ' Ghich can be defined by lim, o |s[224 LES 0 (0220 (D (009) gy A, = 24—
%t). Here we give a more explicit definition without using a limiting procedure.

Definition 2.3. Fix aj,as,a3,a4 € R and z € (0,1). Set s1 = 0,82 = 2,83 = 1,54 = 00 and Gy(z,00) =
2log |z|4. Sample (h,c) from |z|~ 727 [1— 2|~ "2 " Py x [e(% 22 =ede]. We write LFE_HO”’0)’(0‘2’2)’(%’1)(&4’00)
for the law of ¢ where ¢(z) = h(z) — 2Qlog |2+ + %, 2 Gx(z, sj) +c.

j=1 2

With these definitions we can now give the definition of the boundary four-point function of LCFT.

Definition 2.4. Let u; > 0 for i = 1,2,3,4 with at least one parameter strictly positive. Suppose
a1, g, az, ay € R satisfy the Seiberg bounds:

4
(2.3) Zai >2Q and o; < Q.
i=1
Then using the notation (21, 22, 23, 24) = (0, 2, 1, 00), the boundary four-point function is defined by:
(2.4)

4
<H Bgl“‘“(zz)> — /e—mE¢>(—0070)—u2£¢(072)—u3£¢(z,1)—u45¢(17+<>°) LF[(HIO”’O)’(O‘Q’z)’(%’l)’(a“’m)(d(b).
i=1

Here the notation B4 "*'(z;) indicates we have a boundary insertion of weight «; at z; with boundary
cosmological constant p; to the left of z; and ;41 to the right. By convention pus = .

2.3. Structure constants of boundary LCFT. The first step in solving boundary Liouville CFT is to
compute its structure constants. This has been performed in the probabilistic framework in the works [RZ20].
We recall here these results in the case where the bulk Liouville potential is set to zero. We list the analytic
expressions for the bulk one-point function U, the bulk-boundary correlator GG, and the boundary three-point
function H. These formulas can also be defined probabilistically in an appropriate parameter range (as the
boundary four-point function given above) but for our purposes we will only be working with the analytic
expressions.

e Bulk one-point function. Consider parameters up > 0, 8 € C. The bulk one-point function has
analytic expression given by:

(2.5) U, (8) = 2120 =@

20—
2(Q"75) 2_%27{' ’Y(Q 7 F(’Yﬁ 72)
g gl ) 2 47

g T(1— VT2

e Bulk-boundary correlator. Consider parameters ug > 0, o, 8 € C. The one-point bulk one-point
boundary function has analytic expression given by:

8 Yo Q(Q*ﬁ*%
2_2B6-Q)+a, 2e-m-o [o0=F+For\"
2.6 G (a,0)= T (——————)Hun " _—
(26) o) = 2D (L, e
(] 2 (o] (0% o
PP+ -l (8- 9B+ 5T (Q %)
'3 (Q—a)l';(8)’I'y(Q)

Note here that the parameter o corresponds to the boundary insertion and the parameter § to the

bulk insertion, which is the opposite of the convention used in (cite).
e Boundary three-point function. Consider parameters 1, 82,83 € C and pg,po,pu3 € {2z €

X

C|Re(z) > 0}. Given these u; we define variables o; by the relation u; = (0= %) with o; = % for
w; = 1. The boundary three-point function is then given by

(B1,B2,83) __ QF B1+ B2 + 3 — 2Q  —(81,82,85)
(H1,p2,p3) ; ( 7y ) (p1,12,13)”
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where H Eﬁiiziz)) is a meromorphic function on C® of its six parameters f5;,c;, which under the
condition Re (Q —o03+ 09— @) > 0 can be represented by the formula:
(27) T
()5 (2 E D@Dy (2 - BTy (BHp=try (Q - ATy (Q - gt
M- %)% 5 (Q)T3(Q— BT (@~ B3 (Q — Bs)
05 (—(2Q— 5 —01-02)(Q— G —01-02) HQ+ R —02—03) (B2 —02—03)+H(Q+ 32 —01—03) (E —01—03) —203 (205 -Q))
. Sw( —|—01—02)S%( + 03 —01)
y S%(Q—B—;—l—ag—Ug—l—r)S%(%—i—ag—al—i—r) 1(Q —‘—l—ag—al—i—r) (=52 4oam US)Tdr
cS3Q+3 -2 +o3—01+7)532Q -3 - Z +05-01+7)S3(Q+7) i
In the integral appearing above the contour C’ goes from —ico to 100 passing to the right of the poles
atr = —(Q—%—"-O’:;—O'Q) n%—m%, r=—(% S4o3—01)— n%—m;, r=—(Q- +03 o1)— n%—m%

and to the left of the poles at r = —(@1 B2 5 +0o3— 01)+n7—|—m7 r= (Q—B1 ﬁZ 5 +03— 01)—|—n7+m7
r= n% + m% with m,n € N. See appendlx A.2 for more detaﬂs on this expression.

Note again that all these expressions correspond to having set the bulk cosmological constant of Liouville
CFT to 0. We will also use the special cases of the boundary three-point function where one or two of the
boundary cosmological constants are set to zero. This reduction has been performed in [RZ20]. We state it
here as a lemma.

Lemma 2.5. Let 81, 32,83 € C and uo, u3 > 0. Define as before o9, 03 by the relation u; = V(0= %) with
o; = % for pu; = 1. In the case of a single non-zero cosmological constant, one has the simple scaling

2F B+ B2 + B3 — 2Q wﬁ(ﬁuﬁzﬁﬁ

(B1,B2,83) __
H(O,uz,o) _;( ~y Ho (0,1,0) >
and the expression:
2Q-8 Y_2y(0_By_ 3 _
gy (2m) T ) ETRQTIT (§ - Qg (PO (BRI (@ - )
oy D1 )% (29 (O3 (@ — AT3(Q— Ba)T5 (Bs)

2Q-B y_2 B B o — .y o —
(B2 BB (2m) "% +1(%) 3-2)(Q-3)— 1F1(2Q7§)F1(51+63 ’BZ)F (Qim-&-,ﬁ; 63)1—‘%(@762-"_523 /31)

H = 2 2 Pl
(Orp2,105) r(1— 742)2@ ‘*p(w) (@3 (Q — B3 (Q — B2)T'1(Q — B3)
2l
B2 | Bs _ B B _
x eiT72(2Q—=F1~B2—P3) 5 Q(B1+Pa+B5— 2@)/ 53545 535 Q+T)e—i2w(02—as>7“d—_r.
c S:(@Q@+7)S3(Bs+71) [

This last integral is converging if and only if:
Re(B2 —2Q +2(02 — 03)) <0, Re(2Q — B2 +2(02 — 03)) > 0.

2.4. Conformal bootstrap for boundary LCFT. The next step in solving Liouville CFT is known as
the conformal bootstrap. This has been performed in the case of boundaryless surfaces in the breakthrough
works [GKRV20, GKRV21]. In the case of surfaces with boundary, there is a result in the case of the
annulus [Wu22] and a work in progress by the authors of [GKRV20, Wu22], in the case of general surfaces
with boundary.

In order to derive the fusion transformation of the spherical conformal block, we will use the two differ-
ent ways of writing the conformal bootstrap for the four-point boundary disk correlation function. These
statements have not yet been proved in the literature but they are a work in preparation by the authors of
[GKRV20, Wu22].
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Theorem 2.6. Let o; < Q, a1 + g > Q, a3+ g4 > Q and z € (0,1). Then one has:

4 2 . ) 2
(28) <H Bg:"“”’“ (Zz)> _ Z(QT_AQI —Aay) / H(a1,ag,Q+zP)H(a37a4,Q7lP)ZPT]_-sphere (Z, P)dP
R

(1,p12,13) (13,04, 01) a1,02,03,04
=1

Here the integration over P is absolutely converging, i.e., it converges with absolute values added.
The previous statement corresponds to the fusion z — 0. Let us now give the z — 1 statement:

Theorem 2.7. Let a; < Q, a1 + a4 > Q, s + a3 > @Q and z € (0,1). Then one has:

4
<H Bg?"““(zi)> =(1- Z)(%Qanngug) / H(ou7Q+iP’,a4)H(o¢2,a37Q—1ﬁP')(1 B Z)PT&]:sphere (1— z,P')dP’.
’ R

(p1,p02,p4) (h2,13,14) Qa1,02,03,04
i=1

The integral over P is again absolutely converging.

2.5. The 1-point torus case. We give the analogue of the previous subsections required to prove our
results for one-point torus conformal block. We will require LCFT and the bootstrap statements on an
annulus. For 7 € iR, we define the annulus

C. := the rectangule bounded by 0, 1, %, 1+ g with vertical edges identified.

2.5.1. Boundary Liouville theory on the annulus. We will now define Liouville CFT on the annulus C,. We
define the annulus boundaries

9oCr :=10,1] nCr =[1/2,1+7/2].
We adopt the notations of [ARS22] with Tars := 5. In particular, we define:
e LF, is the law of the Liouville field ¢ on C,, defined as in [ARS22, Definition 2.2] with Tags.
) Eg is the quantum length operator
o [j:= Eg(@OCT) and L := ﬁg(alcT) are the boundary lengths.
In what follows, we fix the following cosmological constants:
e 1 = 0, the bulk cosmological constant

e 19 > 0, the boundary cosmological constant corresponding to 9yC,
e 17 > 0, the boundary cosmological constant corresponding to 0:C.

2.5.2. Boundary bootstrap on the annulus. With the previous notations we can now state the bootstrap
results on C,. The first boundary bootstrap, proved in [Wu22, Theorem 1.2], is the following statement,
which we extrapolate from the case @ = 7 in [ARS22, Theorem 3.1].

Theorem 2.8. Let o € (0,Q), g € (0,1). We have that:

1 1
—LF, [Lyerolommliyg (0)] = — — / Gio (0, Q +1P)),, Uy, (Q — iP)q3 " g5 Fios (g, P)dP.
n(q) 21 Jr
In the work in preparation (cite), the following alternative boundary bootstrap which corresponds to a

vertical cut of the annulus will be established.

Theorem 2.9. Let o € (0,Q), g € (0,1). We have that

1 joLo—pi L Ci__—so-¢ (,QHiP,Q—iP)~1 P2~ 1 tonus -
@ femmm Vg O] = 5B | oy T T BRI PYP,

for C; a global constant independent of all parameters.

3. GMC EXPRESSION AND FUSION TRANSFORMATION OF SPHERICAL CONFORMAL BLOCKS

The main goal of this section is twofold. In Section 3.1, we provide an expression of the 4-point sphere
conformal block using the Gaussian multiplicative chaos measure and relate it to the conformal block ap-
pearing in the bootstrap statements of Theorems 2.6 and 2.7. In Section 3.2, we prove Theorem 1.5 which
shows the fusion transformation for the conformal block defined using GMC in the parameter range where
it is well-defined.
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3.1. GMC expression for 4-point sphere conformal block. We start by introducing the probabilistic
definition of the 4-point sphere conformal block. The definition will be stated using Gaussian multiplicative
chaos with respect to the GFF on H with insertions. Recall that h is the free boundary GFF on H (see
Section 2.1 for its definition). Now we define the field h by adding some deterministic function with with h
which is given below:

. 1
(3.1) h(z) = h(z) + ai log — + azlog —— + azlog —— + (a1 + a2 + as + ag — 2Q) log |x|+.

1 1
|| |z = 2| |z =1
Now we use h to define the sphere conformal block. Recall the definition of L;,(0,2) and L;(1,00) from
Section 2.2.

Definition 3.1. (Probabilistic definition of the 4-point spherical block) Let v € (0,2) and z € (0,1).
Consider parameters oy, g, ag, ay < @ and P € C obeying the following bounds:

Q+Im(P)—a; —« 4 2 2 Q—-—Im(P)— a3 —« 4 2 2
P) o 2 S AT(Q-an) A (Q - a), P) ~ a TS AZ(Q—as) A= (Q - aw).
Y v v Y Y Y v v
Our probabilistic definition of the 4-point sphere conformal block is given as
(Bay +Aa —P—Q—Q—Q—‘”“z)(l_ ) —iP—ay— iP—ag—
. z 1 272 1 z 2 Q—iP—aj—ay Q+iP—az—ay
G s (22 P) = z E[£ 0.7 & Lyl

where the normalization is given by
8T —(ay,a2,Q+iP)==(a3,04,Q—iP)
Z:7H(0110§ H(031031 )

where the functions H have an explicit expression given in Lemma 2.5.

Remark. By using Lemma 2.5, the above normalization can be further evaluated as:

2Q—a T_2y(2Q-oy aq+ag— i a iP—a a iP—a ajtas—Q—i
:8£<27T) = +2(%>(2 2)(=%5 )QF%( 1+ 22Q+P>F2( 1+Q+2P 2)F%( 2+Q+2P I)F%(Q— 1+ 22Q P)

Y r(1—2)*5" L2 (@T2(Q —an)l'3(Q — 2)l'1(Q +iP)
r, T3 (Q — oatesn @il

© D(REREEY) N @ETPEO) N Q)T (Q — ag)l3(Q — an)l'3 (Q —iP)
t

(—Q+a3;—a4—iP)1—\7(a3+Q—2iP—a4)FW(OA4+Q iP—as
2 2

2

The following lemma will show the above definition of the probabilistic conformal block is well-posed in
the given parameter range.

Lemma 3.2. In the parameter range of Definition 3.1, the following holds:
E |: Q—iP—aj—ajy QFiP—az—oay

L;(0,z)" +  L;(1,00) gl

Proof. Fix z € (0,1) and zy € (z,1). Consider the vertical line in H given by L = {29 + iy,y > 0}. We
can split the upper-half plane into H = H; U Hy U L, where H; (respectively Hs) is the subdomain of H to
the left (respectively to the right) of the line L. We will then apply the Markov property of the GFF h to
this decomposition, namely we write h = hy + ho 4+ hr, where hy, hy are GFFs respectively on Hy, Hs with
zero boundary condition on L and Ay, is the harmonic extension on H of the restriction of h to L. Note that
h1, hs, hy are independent and that hy is smooth outside of L. We also denote by hl, hz the law of hy, hs
weighted by the four insertions, namely defined using (3.1) but with h;, h; instead of h, h. We now apply
this decomposition to our GMC expression of the conformal block:

]<+oo.

Q—iP—aj)—ay Q+iP—agz—ay Q+Im(P)—aj—ag Q—Im(P)—ag—ay
E H,C;L(O,z)iv L;(100) 7 } —E [/:mhL (0,2) R L (L) }
Q+Im(P)—a;—B Q—Im(P)—ag— Q+Im(P)—aj— Q-Im(P)—ag—
< E |:e‘ ( )2 ay i2|supwe(0’z> \hL(z)|e‘4 ( )2 ag a4’|supwe(1,oo) \hL(m)\ﬁﬁ (O, Z) L aj—ag E;l (1, oo) X ag—ay
— 1 2

Im(P)—aq — —Im(P)—og—
<E [g%lwmem,z) | (2)] o] SO sup, ¢ ) \hm)q

x E [ﬁhl (0, 2)

Q+IIH(P)7(¥17(X2i| Q—Ixx)(P)7a37cx4:|
R .

E [ch2(1,oo) 3

Above to obtain the second line we have bounded the field Ay inside each GMC by the maximum of its
absolute value. Then in the last inequality we have used the independence of the three fields hq, ho, hr. Now

)
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each of the three expectations appearing in this last line are finite. For the first it follows from the fact that
hr, is a continuous Gaussian process away from the line L and therefore its maximum on any compact set
admits exponential moments (here R is compact thanks to the background metric). For the last two terms
the choice of parameters given in Definition 3.1 implies these two GMC moments are finite. This completes
the proof. O

We now give a lemma computing the z — 0 limit of this conformal block.

Remark. We can directly check on this expression that as z — 0, the conformal block is equal to 1. Recall
the expression of i given by (3.1). We now write out the two GMC integrals:

i(0,2) / |x|_7|m—z| \x—1|_4 2h(@) qy,

£;,(1,00) = / a3 (Crtestei—2@g 2|~ o _ 1|7 F 3@ gg,
1

We take the limit z — 0. In the first GMC we will use the scaling of the field, for u € (0,1), z € (0, 1):
ezh(xw) gy = |z|§e%N(2 log 157) g 3h(w) gy,
This gives:

L;(0,2) —z/ l2u| ™ zu — 2|7 pu — 1|7 3 W gy

z—0

1
o~ 23(@Q-ar1-az) N (2log ‘—;)/ |~ [y — 1| F 3 gy,
0
For the second GMC, using the change of variable z = 1 and the equality in law h(1/u) = h(u) we write:
oo 1
L;,(1,00) No/ || 3 (o tea=2Q) | 1|~ %5 3R gy = / 2|~ ju— 1|7 F e3M W gy,
z— 1 0

Using the fact that in limit the two GMC become independent we get that:

Q—iP—aj—ay Q+iP—ag—ay o Q—iP—aj—ag Q-iP—aj—ag 2log L
E|(£;(0,2) > Lj(Lo0) 7 ~ PQmenman) TS T N (2los 1)

hA\™ hA™ z—0
Q—-iP—aj—ay Q+iP—az—ay

x E </ |u| |u71| 2e2h(“)du> (/ |z|~ = |u71| ezt du>

Q% P2 agen A _ —(01,02,Q+iP) —(ay,a3,Q—iP)
_ + + Ag JAN 1,2, 4,3,
=z 4 1 p) 1 apazH(O 1,0) H(O 1,0) .

We can now evaluate the product of GMC’s by the result of [RZ21] recalled in Lemma 2.5.

We now state the main result of this section which gives the almost everywhere equality of the two defi-
nitions of conformal block, namely the series expression given in Section 1.1 and the probabilistic expression
introduced in Definition 3.1.

Theorem 3.3. Let a; be such that a; < Q, a1 + a2 > Q, as + a4 > Q. Fix z € (0,1). Then one has:
JFsphere (2, P) = Gsphere (z,P) almost everywhere in P € R.

a1,02,03,004 a1,002,003,04

We will use the bootstrap statement of Theorem 2.6 to prove Theorem 3.3. Since the 4-point sphere
conformal block is free of the parameters {y; }1<i<4 of Theorem 2.6, we are free to choose the u; as we wish.
Throughout the whole proof below we will make the following choice:

pr=p3 =0, pg=1
The main idea for proving Theorem 3.3 is to apply the operator fooo dugﬂg”_l to both sides of the

7iP70¢170&2

bootstrap statement of Theorem 2.6, where a = Q When applied to the correlation function

in the left hand side of Theorem 2.6 this operator will recover GsPhere (z, P) and when applied to the

Q1,002,03,04
bootstrap integral in the right hand side it will recover FgP'ere (z, P). The following lemma performs
the first of these two steps.
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Lemma 3.4. Let a = @. In the parameter range
(3.2) a; <Q, ar+tay>Q+Im(P), az+ay>Q—Im(P),
the following identity holds:

(3.3)

/OO de;a—l /e—ygﬁ¢(0,z)—ﬁ¢(l,oo) LFI%IC”’0)’(”’2)’(0‘3’1)’(0‘4’00)(d¢)

’ )F(a3+a4—iP—Q

Y Y
_ Z(_Aal_Aa2+PT2+QT2)F(a1 + ao +iP—Q)F(a3+Oé4 _iP_Q)ngphere (va)

¥ a1,002,003,004

ola aga iP—
:|Z|_ 122|1_Z|_ 223F(a1+a2+1 Q

Q—iP—aj—ag Q+iP—o<37a4i|

)E [ﬁh(07z)7w £;(1,00)" =

Proof. Recall from (3.1) that h is the GFF weighted by the four insertions. Let us write out explicitly the
integration over the zero mode in the definition of the correlation function:

/67#2%(0@)7%(1#@) LR 0 (e2:2).(00.1).(04:09) (4 )

e aza ze
e / dee? (@ taztastai—2Q)cy [676 E (”2513(012”%(1,00))}
R

2Q-—ay—ag—ag—ay

Q) +ag+ a3+ oy — QQ)E {(Mﬁﬁ(ovz) + /;;l(l,oo)) ’

v

a2

(3.4) =1z

12|75

Notice that (3.2) implies Z?Zl a; > 2@, which implies the above moment of GMC is a negative moment
and is thus finite for any ug € (0,00). Now we claim and prove that

2Q—a] —ag—ag—ay

oo 0<1+a2+iP*Q71
63 [Cdmn T B[00+ £0,00) T

F(a1+a2+iP—Q)F(a3+a4—iP—Q) @ oy an_iP PETTSI
= F(11+a2+(¥3+0¢4—23) E [E;L(O’Z) " ﬁﬁ(]" OO) 7
vy

Before proceeding to the proof of the above identity, observe that substituting this identity into the right
hand side of (3.4) implies (3.2). Therefore it suffices to show the above identity.

We first show that the integral in the right hand side of (3.5) is well defined. To this end, we show that
integral of the absolute of the corresponding integrand is finite. Taking the absolute value leads to transform
the left hand side of (3.5) into the following expression:

o0 artoy-Im(P)-Q@
/ dpafiy Rl E {(MQE;I(O,z)—i-ﬁH(Loo))
0

2Q—a)—ag—az—ay :|
v

2Qa1a2a3a4]

o0 ajtag—Im(P)—Q Im(P)+Q—aj —«a
:/ du T g [L;L(O,z)w(u—i-ﬁh(l,oo)) g
0

where the equality follows by making a change of variable 2L} (0, z) + u. We will now show that the last
line of the above display is finite. Applying the Holder inequality to the last line of the above display yields

0 —Im(P)—Q Im(P)4Q—aq — 2Q-aj—ag—az—ay
/ R R [Q}(O,z)” S (4 £ (1, 00) ! }
0

1 [e’s} 1
(Im(P)+Q—aq —ag) ajtag—Im(P)—Q (2Q—aj —ag—ag—ag)py | pa
<E|£;(0,2) - }/ duw TR | (w £5(1,00)) ’ }
0
Here py,p2 > 1 are such that p% + p%‘ = 1 and ps arbitrarily close to 1. Recall our condition oy + ag >

Q@ + Im(P). This implies the first term in the last line of the above display is a negative moment of GMC
and hence, the first term is finite for any p; > 1. For the second term, we first write the following by making
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a change of variable u/L; (1, 00) — v:

1
0 S 1
ajtag—Im(P)—Q (2Q—aj—ag—ag—ay)ps | p2
/ duu g 'E {(u—&—ﬁfl(l,oo)) v
0

1
(Q-Im(P)—ag—ag)py | p2 [ ajtas—Im(P)—Q (2Q—a1—ag—ag—oay)
‘E{&ch(l,oo)) ' }/du S A () R S
0

In the above expression, the moment of GMC is negative and is thus finite, and the integral is converging.
Therefore the integral of (3.5) is converging. Making the change of variable p2L; (0, 2)/L; (1, 00) — p in our
integral of interest yields

2Qa1a2a3o¢4:|

ajtag+iP—Q 1
/ dpapy 7 [(uzﬁg(O,Z)Jrﬁg(LOO)) i

ajtag+iP—Q 2Q—a]—ag—ag—a Q—aj—oag—iP QtiP—az—a
:/ dpp 5 Hp+ )R 40,0 L0 ]
0

F( a1 tax+iP—Q )F( aztay—iP—-Q )

B - 5 Q—aj—ag—iP Q+iP—agz—ay
a [ (2rtoztostas—20) e ['Ch(o’ AT Aalleo) } '
B!
This shows (3.5) and hence, proves the claimed result. O

We now finish the proof of Theorem 3.3.

Proof of Theorem 3.3. Recall the definition of Z from Definition 3.1. It was written in terms of Hggll?)i QHE)

and H (831’%31’@ ), Using the relation between H and H as written in Lemma 2.5, we observe

ap+as+iP —Q as+ag —iP —Q

_ o, +iP as,q iP
Z = 2myT( )~ 5 )” 1H((o,11,o)2 @ )H((O,sl,of e
Hence, to complete the proof of our desired result, it suffices to show
ap,a2,Q+iP as,0uq, iP) sphere
(3.6) Héo,;,of P HG G T FRS g (2 P)AP
041+O£2+1P—Q O43‘|'044_HD_62 sphere
(37) = G (S JEGIS (5 P) ae.

We prove this by using the identity in (2.8) of Theorem 2.6 and the inverse Fourier transform. Note that
the right hand side of (2.8) depends on ps only through one of the H functions, which by a simple scaling
argument (recalled in Lemma 2.5) can be written as:

Ao, —Aq (a1,02,Q+1P) pr(as,04,Q—iP) 22 rspher
A ) [ s O G e (2 P)AP

Q2 M a1, +iP az,aq,Q—iP) P~
= Z( Ber—Baz) ANQ ]:I((O,ll,o)2 @ )I{((Oj,o)4 ) ‘F;Fihgze as, a4(Z7P)dP.

On the other hand Lemma 3.4 tells us that (recall here a = @):

/ dpogy ™ 1/67u2£¢<o,z>fﬁ¢<1,oo> LR 01(a2.2), (0D (000) (g )
0

—Aal_A02+PT2+QT2)F(al top+1P— Q)r(a3 toy —iP - Q) Gophere

,y ,y a1,02,03,004

Recall the following Fourier inversion identity which holds for any continuous f € L!(R) with Fourier
transform also in L!(R), after subbtltutlng o = €Y, fio = e’

(3.8) = 2 (z,P).

Q-iP—aj—ag 8] —Q+a1+a2+iP71

/ dPug ’ duzpy 7 fp2)
0

Q-iP—aj-ay / .
- /de/]Rdwe(w T f(e) = 2my f(e) = 27y (fiz)-
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Multiplying both sides of (3.8) by (2717)‘%%627&170‘2413)/7 , integrating w.r.t. P over R and applying the
above Fourier transform identity yields

/ e 2L (0,2) =L (1,00) LF](HIal ,0),(a2,2),(as,1),(0va,00) (do)

_ 1 dpﬁ%z(_Aal_A%‘*%*%z)F(al + as +iP — Q)P(ag + oy —iP — Q)
2y Jr v

Notice that left hand side of the above display is boundary four point function as defined in Definition 2.3

with parameters 0, mus,0,1. By applying the boundary bootstrap relation of Theorem 2.6 and the scaling

relation of Lemma 2.5, we may write the above identity as:

ngphere (Z, P)

,002,003,004

2 Q-ay—ag—iP . . 2
(Q—an —Aqs,) ~ ~ (a1,02,Q+iP) rr(as,as,Q—iP) L~ fsphere
zh e v R”2 Hey 1o Hi 1o 2T o s as.au (2 P)dP

1 dP Q—aj—ag—iP (

= —_— ( R z -
2y Ju o 2 v
We know that both integrals in the identity above are absolutely convergent. By applying the result that
two L' function which have the same Fourier transform are almost everywhere equal we obtain (3.6). This
completes the proof of Theorem 3.3. O

Aal—Aa2+PT2+QTZ)F(O‘1 +ag +iP — Q)T(aB + oy —iP — Q)ngphere (Z, P).

Q,002,003,04

3.2. Fusion transformation of the spherical conformal block. In this section we will prove the fusion
transformation for the spherical conformal block in a smaller parameter range than the one of our main
result Theorem 1.2. The result is stated here using the GMC expression.

Theorem 3.5. Let «; satisfy a; < Q, a1+ a2 > Q, ag+as > Q, a1 +a4 > Q, as+asz > Q. Fix z € (0,1)
and P € R. Then the following holds

(3.9)  L3Tgwhee  (2,P)=C(2) / Mphere (PP (1= )P gsphere (12 P')dP,

2 2
where C(z) = Z(Aa1+Aa2_QT)(1 - z)(QT_Aas_A%) and where the fusion kernel is given by

(3.10)

sphere /
Mal,ag,a3,a4 (P’ P )

_ izl } F%(Q . IP)F%(Q + iP)F%(aT+Oé4;Q7iP )F%<Q . 0<1+Q+2iP 7&4>F%(Q _‘ Q+iP 42ra47041)
o F%(a1+a22—Q+1P)F%(a1+Q-;1P—a2 )F%(az-‘rQ-;lP—a] )F% (Q _ %)F% (7iP')

. F%(%Q _ %ﬁipl)r%(%@ _ a2+oz237iP’)F%(az-i-Q—giP/—as)l“%(Q _ %W)F%(Q _ %ﬂ’/—az)

. — asz+tayg—iP a —iP—« a —iP—« astoag— iP ’
F%(IP/)F ( Q+ 3; 4 )1—‘%( 3+Q2 4)1-\%( 4+Q2 3)1"%(@_ 3+ 42Q+ )

ol
2

where Z; has the integral expression:

2 2

S3(Q+7)S3(a+7)Sx(Q+r—1F + 8 + 9 —9)5, (% +r— 12+ 12 49 i

I .—/SW(QEP,“?‘“21*’">53<°“*“5*W—§+T>S;<§—“;+r—€+°;4>5~<°;3—§+T—%’+°;4>dr
1=
C

The above contour integral is well-defined in the chosen parameter range, see appendix A.2.

Will we prove this result by applying the same operator fooo dpaty a=1 to the right hand side of the second
bootstrap statement given by Theorem 2.7. We first state the following lemma which will make the fusion
kernel appear by applying the operator fooo dpapry @=1 to the H function in the right hand side of Theorem
2.7.

iP—aj—as

Lemma 3.6. Let again a = 9= o . Let also «; satisfy a; < @, a1+as > Q, as+ay > Q, a1 +ay > Q,
as + ag > Q. The following identity holds:

o o " Q+iP’, 2.03,Q—iP’ ap+oag +iP - Q a3+ ay —iP —Q
| a3 O m e - zp( e T . JMENE o (PP,
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Proof. Recall the relation lets start by writing out explicitly the relation po = ei™(@2=F) We start by
writing out explicitly the formula for the first H function (keeping here only the integral):

+1P _ & . 041+Oé +iP’ _ Q ,
‘/O<J d/Jz2ll a— 1671'10'2(Q iP —a1—ay) </C S’Y( + W( + T)S ( 4 2 + ’I") 6—127'((0'2—7)7‘ d?") H(al,Q+iP a4).
0 2

Q +7)S3 (o —|—7‘) i (0,p2,1)

Lets first justify that we can exchange the integration over ps and the integration over r, we need to check
that:

/ dJQ/d’l”
iR C

Note that after taking absolute values, the integrations over r and oy decouple since the term e~ 27727 ig
just a phase. By Lemma A.2, the integration over r is finite provided that:

~P/ ’
S%(le + % B al + T)S (a1+a4+1P B % + T) (a1,Q+iP ay)

3
Sg(QJrT) z(ag +7) (Op2,1)

el™o2 (g —aq) ezTrQr

< +00.

—Im(P") —2Q <0, Im(P")>0.
We assume that P’ has a small positive imaginary part in order for this integral to converge. By continuity

we can take Im(P’) — 0 at the end of the proof. Next we check the integral over o2. We use the fact

Q—iP —aj—ay
that H ((g‘ L’QSIP as) converges to a constant as pe — 0 and is equivalent to constant times p, K as

o — +00. Now that we can interchange the order of integration we need to compute:

(3.11) / d02€ﬂia2(iP—iP’+a2—a4)e—2iﬂang((§L,S$1P oc4)

For this we now write out the explicit for the second H function:

« as ’ az+as—iP’ Q /
22_7‘5—{-7")5 ( 3 22 _7+r)e—i2ﬂ'(%—02)7‘ld7r/

[
c S3(Q+1")Sy(az +17) i
Again thanks to Lemma A.2 this expression is well-defined if and only if one has the conditions:

Im(P’) — 2Re(02) < 0, 2Q —Im(P") — 2Re(02) > 0.

We are free to make a small shift on the contour on integration over o9 in order for o5 to a small real part
which then makes the above inequalities hold. Once the integrals are interchanged, the integration over oq
will then act as an inverse Fourier transform on the integral over 7/. From here we can compute, using below
a=q] + oo+ as+ ay:

a2+a3—iP/—Q

o0 4 iP —
/ dpiopiy a— 1H(0<17Q+1P (14)H(0t270<s7Q iP") F(Oél tag+1 Q

(0,12,1) (12,0,1) =3 5 )T( S )
2Q—a J_2 _ay_ a1 das—0O—iP! o P —a iP o —on
y (27‘(‘)77 +2(%)(2 SNQR—-%)—2 F%(%)F%(Q—%)F%(Q—%)
r(1- %) 27 F(a1+a4-ﬂ‘:y-iP’—Q)F(az-&-ag;ip’—Q) Iy (Q)F% Q- oq)F% (—iP’)F% (Q — )

T3 (3Q — ety (3Q — exteg i (2@l oas )P (( — cates QHE D, ( — 2stQ 1l az)

I (Q)T3(Q — a2)l'3 (Q — ag)I'3 (iP)

X e 1-rrz (a1taztas+as—2Q) % enr2 (Q+iP' —az—as3) % ’}/6”72 (Q—iP—a1—a2) 1'rrz (iP—iP'+as— a4)Il

The last line can by simplified by:

eiﬂ'%(a1+a2+a3+a472Q) % eiﬂ%(Q+iP’,a27a3) x ,yeiﬂ'%(inP*Otl*Oéz)eiﬂ'%(iniP/Jraszk) = 7.
Putting everything together this gives the claimed result. O
With this lemma we can now finish the proof of Theorem 3.5.

Proof of Theorem 3.5. We will thus apply our operator fooo d,uguga_l to both sides of the second bootstrap
statement of Theorem 2.7. By Lemma 3.4 we already know applying this operator to the left hand side will
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sphere

give GoP"S* o0, (2, P) up to a prefactor. For the right hand side by first using Theorem 3.3 we obtain:

o D/ =Y 2
/ du%ul;afl (A H(a1,Q+1P ,a4)H(a2,a3,Q71P )(1 . z)PTthere (1 — 2, P/)dP/>
0

(0,p2,1) (p2,0,1) a1,02,03,04
Oo —a— 1,Q+iP’ 2,03,Q—iP’ P2
= [ ([ S H 0 = ) F G 1 - 2 PP ).

We then need to justify the exchange of the integral over ps and the one over P’. This is equivalent to
showing:

/ dug/ dpl
0 R

Using the bounds (cite), as gz — 0, the quantity is

_a—lH(oth-‘riP/,azL) (az,a3,Q—iP") PT/Qgsphere (1 . Z,P/)

Ha (0,pu2,1) (p2,0,1) (1 - Z) a1,02,003,00 < +oo.

H(Ozl,Q+iPl,OL4)H(D¢2,a3,Q7iP/)

(0,112.1) (142,0,1) ‘ is of constant order in us

2Q—aj—ag—ag—ay
and as pg — 400 it will be of order p, T . In both case the total P dependence grows at most
as CecP1o2 Pl and therefore the integral over P’ is absolutely converging. For the integration over i, it will
thus converge if a; + as > @ and ag + ay4 > Q. These conditions are indeed satisfied.
This claim should follow from the asymptotics written under Lemma 2.5. Thus by exchanging the integrals
and applying Lemma 3.6:

0o
—a— a1,Q+iP as,a3,Q—iP’ P2 r
[ st ([ G 0 ) G 0, (1 PP
> —a— a1,Q+iP’ « as,a3,Q—iP’ P2
= [ g S ) (= ) G (1 P

:/ <ZF(041 + o +1iP — Q)F(OZS + oy —iP — Q)Msphere (P, Pl)> (1 _ Z)PT&gsphere (1 _ Z,Pl)dP/.
R

,y ,y Q1,002,003,004 o1,002,003,004

Simplifying the prefactors we obtain the result claimed in the theorem. O

4. ANALYTIC PROPERTIES OF THE FUSION KERNEL AND OF SPHERICAL CONFORMAL BLOCKS

4.1. Identification with the Ponsot-Teschner fusion kernel. In the physics literature a different ex-
pression is given for the fusion kernel. In this subsection we will show that they are equivalent. Consider
the following expression of PT for the fusion kernel:

MEPheePT (p phy T3 (2Q =81 — B — B3) 3 (B2 + fs — B1) 3 (Q + P2 — B1 — B3)I'3 (Q + Bs — B2 — 1)
apamaneat T T (2Q — 01 — 1 — 09) T3 (01 + 00 — B1)T3(Q = B — 02+ 01)T3(Q — f1 — 01 + 02)
F3(Q—Bs—o14+03)'2(Bs+01+03—Q)'3(01+ 03— B3)['y(03+ B3 — 1)

)Ty
“TiQ- P2t 03)I'3 (B2 + 02 + 03 = Q)3 (02 + 03 — B2)T'1 (03 + B2 — 02)
Ty (2Q — 202)T2(202) 1 Sz(U; + s)
2 2 d 2
/i]R gl Sy

—_ o~

[S/S3 NS}

“TL(Q 2805 (26 - Q)1

where one has:

Uy =09 + 01— fi, Vi=Q+ 02— B3~ B+ o3,
Uy=Q+ 02— 01— P, Vo =03+ B3 — 1+ 03,
Us =02+ 2+ 03 — Q, Vs = 209,
Uy = 02 — B2 + 03, Vi=0Q.

and with the following parameter identification:

a1 Q—‘y—lP
01 = —(F, 02—

2 2

Oy Q2 ag
70—3:7351:7752:77ﬂ3:

Q +iP’
. .

2
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More explicitly, plugging in these parameter we get:

_Q+iP a1 an Q+iP Q+iP" ar oy

U —_ - = Vi=
! 2 2 27 =0+ 2 2 27
+iP « o +iP +iP' « o
UQ:QJer 3 % VQ:QQ +Q2 5ty
Q+1P Qs Oy .
Us = -+ - Vs =Q+iP
3 9 9 9 Qv 3 Q+1 )
_QH+iP a3z oy B
U4* 9 D) 23 VZL*Q&
and thus:
MPheePT (p pry [y (2Q-% -5 - QJF?‘P T2 (% + QJ.FQ‘P —%)F%(Q+%—%—a3)F%(Q+QE‘P _%_%
T T30 - - F - SO (Y 90 - PI3Q - - R PIN3Q - F - % + T
y F%(Q_Q-i-ziP/ —%—i—%)F%(Q"'_;P/ +%+%—Q)F%(%+%— Q—glP’)F%(%_~_Q-&-21P’ _%)
T3Q- % - B 93 (5 + B+ 5 - AN + 5 - PT3(F + 5 - 5D

T3 (Q —iP)T3(Q +iP)
5 (iP5 (—iP")

+7)

/ Sy(HE p a2 4S8 (Q+ L — 9 — w2 g5 (L w4 Q4r)Sy (L 2y
iR

S%(Q‘F%_%—%‘F%‘FT)S%(%‘F%_

Proposition 4.1. One has MsPhere

a1,002,003,004

(P7 Pl) — iMsphere,PT

oq,002,003,04

(P, P).
Proof. The proof of Proposition 4.1 is based on Proposition B.3 expressing a symmetry property of hyperbolic
Barnes integrals. For i = 1,...,8, define b; = a; — Q. For u € C® defined by
1 o7 o7 o7 / . 1 7 o7 e 12 .
u= (1(—213)1 +iby +iby — P + P’ + 2iQ), 1(211;1 +iby +iby — P + P’ + 2iQ),
1, ~  ~ ~ o~ 1, ~  ~ 1,~ ~
i(—ibQ +iby + P —3P"), —(iby — iby — P — P’), i(—ibg +iby+ P+ P, Z(ibg —iby +3P - P'),
1, ~ ~ o~ 1, ~ ~  ~

1(—'b2 — 2ibs — iby — P + P’ — 2iQ), Z(—ibz +2ib3 —iby — P+ P’ + 2iQ)),

= =

we find that v/ = w - u is given by

1 ~ 1 ~ 1 ~ 1 ~
o = (5(—ib1 + P + iQ), §(ib1 + P+ iQ)7 5(—ib2 + P — P/)7 5(—ib4)7
1~ 1.~ 1 -~ N .
5(1b4),§(1b2—|—P—P’),§(—1b3—P+1Q),§(1b3—P+1Q)).

Define the integral expression

G+ G +1)S1(Q+IP+1)S2(Q+ 1)

o[ A
iR

L) (Q+ T - -2 )y (4% —Q+r)Sy (- e+ % 4r)
[0}

S3(Q+ QP — QHPT _aa 4 a4 | )G, (P | QT a2 4 a4 )60 (Q + 1P +1)53(Q + 1)

Shifting the integration contour of Z; by —% , and the integration contour of Z by %52 — {54 — %Q—}— %iP’ - iiP
and applying Proposition B.3, we obtain that
(41) Ty =T S3((£by + by +iP' +Q)/2)S3 ((£by + by +iP + Q)/2)

Sy ((=ba £ b3 —iP' + Q)/2)Sy ((£bs — by — iP + Q) /2).

: spos . : L sphere sphere,PT
Simplifying the prefactors of the integrals in MP'%e |, (P, P’) and MP s | (P, P'), we find that (4.1)

implies the claim. O
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4.2. Analytic properties of the fusion kernel. In order to prove analytic properties of the 4-point sphere
conformal block, it is required to fully understand the analytic properties of the fusion kernel. Consider:
iym = 2in
Pm,n = T + —.
v
We will prove the following proposition.

Proposition 4.2. Fix P’ € R. Let also «a; satisfy a; < Q, a1 +as > Q, ag +as > Q, a1 +aq4 > Q,
as + az > Q. Then the function P s ASPhere (P, P") is meromorphic on C with simple poles at

x1,02,03,04
P ==P,, ,, for m,n > 1. Furthermore the residues at the poles are given by

(4.2) Resp—p, , MPhere (P, P') = c(m,n, P)MsPhere (P, P,

m,n a1,002,003,004 a1,02,03,004

where we have introduced

71 .
. mn 1 ym  ~yi n 2k
@3)  clmin, P) = —i(—1) 1 &= I <Tj Ity 7) ,

and used the notations Sy, = {(j,k) € N2, —m +1<j<m,—n+1<k<n,(j,k) # (0,0)} and:

ot e-Q o w-atQ@ g, ezt Q g 3Q-as—ag

2 2 2 2
Proof. The function MPree (P, P') contains the product I'y (Q — iP)l'y(Q + iP), which has poles at
the desired locations, P = £P,, ,, m,n > 1. Establishing the proposition will thus contain two steps: i)
show that the function AMsPhere (P, P’) is analytic in P on C\ Uy, n>1{Pm,n, —Pm,n}, ii) establish the

ap,02,03,004
value of the residue at P = £P,, .

Step 1. Let us introduce the following function of P:

—

(44)  f(P)=

( 041+QJ5iP*042 )F

F% ( a1+a2;Q+iP)F (a2+QJ5iP7a1 )1’\% (Q _ Oé1+a22*Q*iP)

x
2

— R

X - - - ——7;.
Ty (7Q+a32+a471P)1—1%(a3+Q721P7a4 )F%(a4+Q;1P7(J¢3 )F%(Q _ a3+a42—Q+1P) 1

The goal of thus to show that f(P) is an analytic function of P on C. For this we will use the following
lemma giving the set of poles of Z;.

Lemma 4.3. The function Z; is a meromorphic function on C8 of all its parameters o, s, a3, o, P, P and
has poles when § = = + 277”, for m,n > 1, where £ can be equal to any of the following:

0(1—044—ip/—Q Q—al—a4—ipl 043—()(4+iP—Q Q—Oég—Oé4—|—iP

2 ’ 2 ’ 2 ’ 2 ’
o +ay—iP—3Q —-Q-aj+as—iP az+ay+iP—-3Q —Q—az+as+iP
2 ’ 2 ’ 2 ’ 2 ’
al—ag—inQ Q*Oélfagfip Oég*OéQﬁ*iP/*Q Q*Qg*(]gﬁ*ipl
2 ’ 2 ’ 2 ’ 2 ’
ay + ag —iP — 3Q —Q — a1 +az —iP a3+ as +iP —3Q —Q —az+ ay +iP’
2 ’ 2 ’ 2 ’ 2 ’

Proof. Let us rewrite the expression of Z:

L:/Sﬂ%?+%?+w%wWﬁW?wﬂﬂ26§r§+?Wﬂ§§wf+?mr
c S%(Q—FT')S%(OM"FT)S%(Q—FT—%-F1123/+%—%S%(%—FT—%—FHQD/ G) [
Recall also that the function Sy () has poles at v = —37 — 277” and zeros at = Q + 5 + 27’” for any

m,n > 0. As a function or r the integrand in the expression of Z; has poles at the following locations, for
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any m,n > 0:

ar—ag—iP —Q Yn 2m  Q—a;—as—iP" yn  2m

2 2 v 2 2 ol
ag—as+iP—-Q m 2m Q@Q—-a3—as+iP ~yn  2m
2 2 v 2 2 v
iP—iP' +as—« n  2m iP—iP' —as — « n  2m
ML TR 0y R
2 2 2 2
n  2m n  2m
T+ Qrar T+

We thus have four lattices of poles extending in the positive real direction and four lattices of poles extending
in the negative real direction. The function Z; has then a pole when the parameters are such that the
integrand of Z; as a function of r has a pole of a lattice extending to the right collapse with a pole of the
lattice extending to the left. See the proof of [RZ21] for more details on how these poles appear. By writing
out all the possible combinations, this gives the claim list of poles of the lemma. O

Using this lemma it is now easy to conclude that f(P) is an analytic function of P on all of C, since
the poles coming from the integral Z; are cancelled by the poles of the double gamma functions in the
denominator of the prefactor in front of Z;. This completes step one.

Step 2. In this second step we will establish the claimed formula on the residues at P = +F,, ,,. The non
trivial step is to relate Z; at P = P, ,, and P_,, . For this we will need the following cyclic permutation
identity which is proved in Appendix B.

(4.5)
/ Sy(—Z+ort05+1)53(Q -2 +05—02+1)S3(L +0o5—01+71)S3(Q— L +o3—01+7) dr
C

S%(Q‘F%*%+03701+T)S%(2Q*%*%+O’370'1+T’)S%( o3 + )SW(Q+T) 1

53+52*51 )F%(Q _ /33+51*52)S%(ﬁ +oy — 0.2)5%
(’82 + 09 — 03)5%

%+U1+0'2—
%—&-03—1—01—

_F g( —o01—-03+Q)
1—‘% ( —o3—02+Q)

x/ %(f—+01+02+7’)5w(Q 1+O’270'1+7’)S%(%+O'270’3+T)S%(Q7%+O’27U3+T)ﬁ
c S3Q+% -3 +0s—03+7)532Q - % — G + 02— 03 +7)S3 (205 +7)S3(Q+7) é

|2

Q)S
Q)S

MR
—~ |~
N\Q

(
(51+53 B2 )FZ(Q ﬁz+B3 )
S

In this equality let us plug in the parameter substitution:

—iP’ « « .
01:L7 0—2:73a 0—3:747 61:(127 62:Q+1P7 632011.
2 2 2
Under this choice, the integral of the first line becomes Z; and the integral of the third line becomes:
P /S ( +Q L4 r)Sy(f -2+ e+ 4n)S (M pm ) (- w o wgy g,
1P = c (Q+———+73—%+r)sg(2Q—%——+———+r)sw(a3+ )81 (Q+r) h

Under this form it is easy to relate Ji(Pp,n) and J1(P-m.n). Using (A.5) it is immediate to derive the
following identity:

P P — vm
(T - (T — ’ =5+(T — — —)S~+ (T - - —
Sy (T + —57) 53 5o = S3( . +7)57( + 2 7)
™ osin(nl(T 4+ X(m —2i)— 2
_ngl ( 3( :1{( ) Z))SJ(T—F@—FE)SJ(T—’WTL—E)
[[iz) 2sin(m 3 (T + 3 (m = 20) + 7)) 2 4 2 4
P P
= (=)™ S (T + —5=)S3 (T = —5=).

Then setting T = w + r immediately gives J1(Pp,.n) = (=1)""J1(P-pm ). Finally we need to take a
look at the P dependence of all I'y and S% functions in front of J;(P). Combing the prefactors in front of
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7, in (4.4) and the expression in the second line of (4.5) and obtains the function:

I3 (Q —iP)Iy(Q +iP)

1"%(a1+a22—Q+iP)F%((Xl"FQ'giP—CW )F%(a2+Q'giP_(Xl )F%(Q - a1+a22—Q—iP)

1
X < - - 0
F% ( —Q+a32+o¢4—1P)1—\% (a3+Q—21P—a4 )I\%(a4+Q—1P—a3 )1—\% (Q _ a3+a42—Q+1P)
iP— —Q—iP
. . F%(af"'Q—;l az) %( o a1+a22 Q—i ) |
F%(M)F%(Q_Qﬁ'lpgal*az) %(Q +%—%)S (Q+1P_%_%+Q)

F% (Q+iP)
1—\% ( aﬁ»ag;@:l:ip)l—w%(aquQ:;inal )1—\% ( a3+Q:I;iP7a4 )1-\% (3Q7a3;a4:|:ip> .

To establish an identity of the type Resp—p,, , M4 = (P, P') = c(m,n, P)YMPree @ (Ponn, P'), we

first compute the residue of I'y (Q +1iP). We write out:
F1(Q+iP)I'1(Q —iP)

I'(3(Q+iP+j3)) : .
F(%(é Sy ey +21)%)) T2 (Q+iP +ym)y(Q —iP —ym).

Qnﬁl (2> 2(2iP+(25+1)%)

=0 N7
Record the identity:

| PGQ+iP+m=-13) fym D(3(2 — 2 +iP 4 20))
lim (P—Puyn) A o 755 = lim (P——) T o
PP rG@Q—iP—(m+1)3)) pyiym 2 F(5(5+771P77))
ivm . 1 1
= lim (P — —
n! p_yiym 2 )kl;[lk:—n—l—z(lP—&—T'Y)
2i (—1)n~!
~v nl(n —1)!
This implies:
y M=l o\ FRIPH2+D)3) T(2(Q+iP + ;1))
im (P—Puyn) H — 0 —iP — (i 5
P—= P on j=0 Y F(Q(Q 1 (] + 1)2))

anm T D3R -2 +53) . N2(Q+iP+ (m—1
_ (%) I 2 2 ; (g( ( )3))

j=—m.j#-1

-6 (L ) et 17

j=—m,j#—1k=—n Q@+ F)+k v nl(n =1

G K)ESmm 2 T Y
where we have used the notation Sy, ,, := {(j,k) e N2, —m +1<j<m,—n+1<k <n,(jk) # (0,0)}.
From here we conclude that:
. . . 1 .
Resp—p, ,[3(Q+iP)T3(Q—iP)=-i [] FERET) T3 (Q+ 1P ) T3(Q = iP—n ).
(4,k)ESm,m 2 v
Next using (A.3) one can easily derive:
le,n iPmn
F%(T B )F%(T— 2' )
m—1 n m 7 Y(n . .
- 11 (F(M_ s+ ) 3R ) ry (7 + omnyp (- Mo
S \TGT+z-Fr) iy ) T2 T
m—1n—1
1 P—m n P—'m, n
- (T ym | yi _n 2k>F3(T 1 27 )F%(Til 2’ )
iZo ko \T T Ta T2 Ty T
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Therefore we arrive at:

ag+Q +iP, , — a4 3Q —az —oy iP5,

a1+a2_QiiPmn a2+Qj:iPmn_a1
Iy o A ’ I'~ : o
3 ) T3 ( . T3 ( ; T3 ( . )
11 h"ﬂ( )
m 1 n 2k
Sk \ - Ay -5+
oy —QEiP oy +QEiP_, —ay a3+ QEiP_p, —ay 3Q —as3 — oy £iP_,,
x T3 (% T ( T4 ( T4 ( )
2 2 2 2
where we have used the notation:
T1:041+§2*Q, T2:042*31+Q’ T3:OZ3*;4+Q’ T4:3Q*O2é3*044'

Putting all the above steps together we arrive at the claimed expression of ¢(m,n, P):
4 omotnd ym  vi n 2k

@ emn Py | T g | ITITIT (54 -2+ %),

(J,k)ESm,n j

This completes the proof of the proposition.
O

4.3. Analytic properties of the spherical conformal block. Taking as an input of the results of the
previous section, we are now able to finish the proof of Theorem 1.2.

Proof of Theorem 1.2. Recall again:
iym  2in
2 v
We will prove the four claims of the theorem in order. First for claim (a), fix z € D and P # P, ,,. We have
established the fusion transformation in Theorem 3.5 in the parameter range range where ggflhg';a 5042 P)
is well-defined. By using the almost sure equality of GP'e = (z,P) and FgPhee = (z, P) proved in
Theorem 3.3 we can further write:

(A1) TG (5 P) = O) [ MR (PP = 2R (12 PaP

Q1,02,03,004 aq,02,03,004

Pm,n:

Now here we will simply take the integral on the right hand side as the definition of the conformal block for
any z and P. For almost every P’, the integrand of the integral on the right side is jointly analytic in P
outside of the poles of M;plhg;aB)M (P, P’), which precisely corresponds to choosing P # P,, ,,, and analytic
in the z variable thanks to the following lemmas. To say that these properties imply the block on the left
hand side has the same properties we need to show the following integral is finite:
/ )szlhzz,aaxa4 P P/)(l o Z) ) ‘7:;'31}:2:7&3 a4( - Z’Pl) dP' < oco.

For this purpose we give the following lemmas proved in [GKRV20]. Recall the coefficients 3, of the series

expansion of the conformal blocks given in introduction by (1.6).

Lemma 4.4. Fix parameters oy, as, as,aq and P € R. Then one has:

‘Bn(AQJriP, Aocl 5 Aag; Aagﬂ A()¢4)| (ﬁn(AQ+iP7 Aal B Aag 5 Aaz 5 Aocl) + 571 (AQ+iP7 Aa47 Aaga Aa;g? Aa4))-

IN
— Nl

Proof. Since the matrix (FC;LP(

‘ﬂn(AQ—HPa A(xl ) Aaz ) Aaga Aa4)|

V")) |v],|v’|=n is positive definite, by Cauchy-Schwartz
(AQ+2P7 Aoq 9 AOLQ 9 A(J/Q ) Aoq )1/2/8n(AQ+’LP7 A(Juu AQ/J ) A(X\g ) Aa4)1/2

(6n<AQ+iP7 Aal 3 Aaz 5 Aaz 5 Aal) + Bn(AQ+iP7 Aa4a Aaga Aaga Aa4))~
O

IN A
N | = Q

This lemma immediately implies for the conformal block the next result.
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Lemma 4.5. For |z| < 1, we have:

1 1
(4.8) e s asas (0 P < ST an (121 P) + S TR g, (121, P)

a1,002,003,004 ) ,02,002,001 Qq,003,003,004

Now using this lemma we can bound:

dP’

a1,002,003,04 a1,02,03,004

/ ‘Msphere (P, P’)(l _ Z)%(P’)z}—sphere (1 - Z, Pl)
R

dP’

a1,002,03,004 a1,02,01,002

<3 [ MBS o (PP = B (1 5], P
R

1 ,
+ § /]R ‘Msphere (P, P’)(l — z)%(P )2‘7_22}:2,:7(13’&4('1 . Z‘,P/) dpr'.

a1,02,03,004

By using the result of Lemma A.3, one can see that these integrals are finite.

For the claim (b), we want to prove the same result but at P = P, ,,, after multiplying the block by the
appropriate (P — Py, ,,)"™#7) to cancel the pole. Establishing claim (b) thus follows exactly the same steps
as for claim (a), except this we need to use the bound

a1,002,03,04

‘1(P _P )m(Ans)Msphere (P Pl) < Czec2|Pl|10g|P/‘
z m,n ) >~

for some constants cz,C> > 0 independent of everything and all P in a small neighborhood of P, ,. We
check using again Lemma A.3 that this bound holds.

Claim (c) of the theorem is a consequence of knowing from (cite [GKRV20]) that the power series expansion
of f;"l*jg';’ag’m(l — z, P’) has the desired form. Lastly for claim (d) we will use the results on the residue of
the fusion kernel established in the previous subsection. The starting point is the claim:

(4-9) ResP:Pm,nMSphere (P, Pl) = C(mvnv P)sz1h7e(;§7031a4 (P—m,n’ Pl)-

1,02,03,04

Taking the residue on both sides of the fusion transformation we obtain:

ReSPZmen (Z%PZ}-sphere (Z,P))

Q1,02,03,004
~Respop,., (C0) [ MEE 0o (PP =8 R (1= 2 PP )
After exchanging the integral and the residue (justification should be the same as above), we get:

1 p2
5P . sphere
z2imnResp=p,, ,Fon as.as.0a (2, P)

— C(Z) / ReSP:PmmMsphere (P, Pl)(l _ Z)%(p/)zfsphere (1 _ Z,Pl)dP/
R

a1,02,03,004 a1,02,03,004

a1,02,03,004 a1,02,03,004

= c(m,n, P)C(z) / Msphere (P_pn, P)(1— 7)3(P')? Frphere (1—2z,P)dP'
R

= ¢(m,n, p)Z%PEm,n]:;gﬁg;asm(z, P ).

Plugging in the expression for P, , this implies:

. sphere _ 2mmn sphere
RebP:Pm,nfal,ag,ag,a4(z’ P) - c(m,n, P)Z fal,ag,ag,a4(z’ P—m,n)~

5. THE CASE OF THE 1-POINT TORUS CONFORMAL BLOCK

In this section we prove the analogous results to the ones established for the 4-point sphere conformal
block in the case of the 1-pt torus conformal block. The outline of the section follows the same steps as
for the sphere case. We start by deriving a GMC expression for the 1-point torus conformal block. Let us
collect here some notations used in the two subsections below. First define:

T3(Q- 932 +9)3(Q- 5~ iP5 Q- § +iP)
_ ) ’

31) ypolo) =5 (1) e 0 s 2
: +,P,0 B 1 I3 (3)ry(Q—iP)Py(Q +iP)Fy(Q —a
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Under the parameter range Q > Re(a), Im(P) € [ Q+ 2 a) ,Q — Re(a ] define the contour integral

$:(5 +§+95;(05 +5-9)

N
P P/ /df . 2 - eQTrP{7
S3(Q+ 15 7 ~§H085Q+5 -§-9)
where the contour C of the integral goes from —ioco to ico passing to the right of the poles at r = —% -9-
n%—m%, r= %—%—n%—m% and to the left of the poles at r = %—i—%—&-n%—&—m%, r= —%—i—%—i—n%—i—m%,

with m,n € N2, The constraint on the parameters is again required in order for the contour integral to
converge at +ico. Then define the function
LIP’) (2miP)

: 1o (P, P),

sin
S3(%)
and finally the modular kernel M®©™s(P, P") by the relation:

Ay of0) soisro

A%RO(Q)

5.1. GMC expressions of 1-point torus block. As in the case of the 4-point sphere, we start by giving
expressions for the 1-point torus block using GMC. Here there will actually be two different expressions,
one coming from the boundary bootstrap as in the sphere case and one coming from our previous paper
[GRSS20]. Let us start by giving the first of these definitions. Here let h, be the GFF on the annulus and
define:

(5.4) he (@) = he(2) + SElh (0)he (2)]

sin(

(5.2) My(P,P') := ¢

(5.3) M (P, P') = M, (P, P')

Definition 5.1. (Probabilistic definitions of the 1-point torus block) Let o € (0,Q) and g € (0,1). For
P € R we can define:

; sEe e ur
g(tloruS(q’P) =, </ egﬁr(ac)dw> (/2 egﬁf(x)dx>
0 T
1 ]
</ eFhr(@) WP"”d:v) .
0

Notice that the main difference between the two expressions is in the location of the P parameter.

g&orUS(q,P) = o

Theorem 5.2. Let a € (0,Q), P € R and ¢q € (0,1). Then one has:
(5.5) Fors(q, P) = GS(g, P) = G2(¢q, P) almost everywhere in P € R.

_2iP _
To prove this theorem, we start by apply the operator p; ~ to the right hand of the first bootstrap
statement on the annulus.

Lemma 5.3. For a € (0,Q), ¢ € (0,1), P € R, the following identity holds

2 1 o _2iP _ /9

60 (Trear) =g [ don T ([ G0, 4P Q- i) e, Par ).
0 R

where the prefactor By is given by:

2P iP _wPEe 9 Lp a2 . .
By =T(—=2T(1 - S A pola)ug 7 e85 (2r) 52720 +5(Q-

(1P)I‘( )F(1P7 I 2iP S%(%

v 2 T g Y 2)(7)5%(113

2iP’
Proof. The integral over P’ on the right hand side of (5.6) using (2.5) can be viewed as [, p; " g(P')dP’
where:
0 ) 2ip’
2-3 —ip’ ) Y -Pl
2 ’Y2 7T> F(l _ 1 'Y
rt—-) 2

o(P) = 2r(- A (

g gl )Go (e, Q +iP")g2"" Fio*(g, P,
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o,  —HP_1
Therefore applying the operator fo dpapy 7 to the right hand side of (5.6) simply amounts to taking
an inverse Fourier transform

S [ ap T gy = 2 iPw 1 iP'w Y _
gt i g(P) =7 [ doe AP’ “g(P") = myg(P).
0 R R ®

It will be convenient to the express the result using A, po(«). For this purpose, record the expression

2iP4a

Gﬂo(aaQ+iP) =py 7F< 42

gl gl ri-7

where we adopt the convention that I'y (A& B) :=I'y (A + B)I'
we can find that:

I'2(Q—a)l'3(Q +iP)?I'y(Q)
(A — B). By applying various identities,

~uEse 2 2Pt a (27@3 570\ T (P S+ DD (Q+IP £ 53 (Q — §)°
)

wp

_2iPta 9 e i o ) 2 ;
(5.7) Gup(a,@+iP) = A, pola)ug  —™¥ =5 (2m)~ 5= g hlem@min@irtap — )% p)
Y
iPy)p 2P 53(5 +iP)
Y Sl(iP)Sg(%)

2

From here one obtains that

2iP iP —HEES D rap_ina? iPa
m9(P) =T(===)P(1 = =1 )a " F(, Pl Ay po(adug T Ze™ T (am) TR R @R i)
iP 2iP. Sz(% +iP
« (O 2(273
v 2 v 82 (iP)Sy(3)
and thus the statement and the claimed expression for Bj. ]

We can now apply the same operator to the left hand side of the bootstrap statement to obtain the
following lemma.

Lemma 5.4. Assume o € (0,Q) and P € R. Then one has:
(5.8)
/Oo —ap e Lo 2iP a  2iP

duapy * LE, [Lae rob BV 0)] = 0220 E 4+ E0E (2, (5,1 4+ 5% £, (0.7 7]

o v vy 2)

Proof. Let h; be given by equation (5.4). Denote by Lo := Ly, (0,1) and £y := Ly, (5,1 + F) the GMC
measures of both boundaries of the annulus. By writing out explicitly the integral over the zero mode in the
definition of the correlation function and by using the bounds for negative moments of GMC one gets:

— AP (a4

o e e
/ d,ul / dc Hq T e 2 [ [[:16_6 2 poLlo—e2? u1£1}
0 R

Thus we can compute:

oo __2iP S _2iP aty)e e e
/ d,ul:ufl " LF, [Lleﬁuol‘o*ﬂllq‘/%(o)] :/ dﬂl.ul ~ /dCG( '; ) E {[:0676 2 poLo—e 2 M1E1:|
0 0
2.P ac ye i
= F(—l— + 1)/ dce  E |:(€7£1)2”/P6
Y

2 2iP a 2iP 2P HE_o
=-I'(—+1)I'(—+ —)E[L,” L, ",
5 ( 5 )(7 7) [ 0 ]

~e
—e 2 Hoﬁo]

O

5.2. Proof of the modular equation. Next we will prove the modular transformation in a smaller range
of parameters than the one of our main result Theorem 1.4.

Theorem 5.5. For a € (0,Q), ¢ € (0,1), P € R:

1

(5.9) qiﬁ ip? ]:toruS(q’ )77_ 3(Q-% /Mtorus )q S+i(P)? ]_-toruS( )dP/

_2iP
The proof is again based on applying again the operator p; ~ but to the second bootstrap statement
on the annulus. We give this computation in the following proposition.

2 & _a_
= *F(g + 1)/ dpE {51 (moLo + p1Ly) 1] < +o0.
Y 0

)
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Proposition 5.6. For a € (0,Q), ¢ € (0,1), P € R, the following identity holds:
(5.10)
/Mtorus PP) 1(P')? ]_-torus( )dP/ _ / dﬂlul 2;}371 (/ H(Oé Q+iP’,Q—iP’") ~ 1P’Z]_-torus( )dP)
By R

(10,400,141)

where the pre-factor By is given by:

By — 2imuy 3 T TP D Q- 9N (HN3(Q— § +iP) T3 (<P +Q - $)5;(Q - 5)
ri-%)%  T3QT3(@Q- (PN (-iP) $3(Q +iP)S3(Q — 5 —iP)
1 A, po(@) motz-rh 1
ame Sin(’ymp )sm(@)'

We postpone the proof of this proposition and use it to finish the proof of the modular equation.

Proof. We thus equate the two bootstrap statements:

]. o0 1 1

a 7/ Gﬂo(a’ Q+ ip)amUm Q- iP)q§P2q7ﬁf;°rus(q7 P)dpP
C oy [ (0, Q+iP,Q—iP)~lp? ~ L ~
ol Nt R e

Applying various identities, we simplify the following expression:
TH(Q-2)T5(3)N4(Q—§ +iP)  Ty(-iP' +Q-2)

B gim2 (25909~
Bl Y F%(Q)F%(Q—Oz)F’Y(IP/)F,(—IP/) S’Y(Q"‘IP)S’Y(Q—%—iP)
y 1 1 (l)f% Fg(;)F”(Q 1P’)F%(Q+1p’)F1(Q—a)
¢1 sin( 1) sin(2HE7) A 2 F(Q-9Ty(2+ 903 (Q -5 —iP)l'y(Q—§ +iP)
2iP iPy.2_ 5p2iao- iPy 2P S2(§+iP)\
D(——)I(1 - —-)=2 (P D(S)T (=) () =2 2
<< (-0 ()L CINS I =5 6y
2 (2 _2 IeY 1 _% 2 2« iPa -t P 2 7%+2
— 432G -2 (-5)-1 = ¥ Lo9—2P°+5(Q—- ] “
4l(v) c1 <2) (72 (IP)> 2ri (7)
e (272P2+%<Q—a>7“'%i)‘1 €
c1 2T

im

This power of 2 can from the structure constants, maybe just remove it.. then one gets ¢; = F.

O

We now complete the proof of Proposition 5.6. We first prove the following integral identity expressing
the integral transform of the H-function as a certain hyperbolic hypergeometric integral. In what follows,
we will transform the resulting integral into the desired form using identities on hyperbolic hypergeometric
integrals summarized in Appendix B. We divide the proof into two steps. In the first step, we express the
integral transform of the H-function as a certain hypergeometric integral. In the second step, we identify the
hypergeometric integral with the modular kernel up to some explicit pre-factor. Let us look at the analytic
issues encountered in proving Proposition 3.3. The first thing we will do is apply the Fourier to the H
function. At the end we will need to justify the inversion with the integration over P’. For this purpose we
first state the following lemma.

Lemma 5.7. Consider a € (0,Q), P € R+ in for a fixed n > 0. Then the following identity holds

/OO ™ Zin*lH(mQHP’,inP’)dul _ 53/ Sy (5 +71)53(Q — 5 +7)S3 (iP — T)e%“(erJrQi(PLP))dr
0 (1o, 0,411) Cs S%(Q-l—ipl +7”)S% (Q+r) ’

where Bj is given by

_a_2iP (27 7%+1 2 (
By = 2irp, @7 G)
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and where the contour Cs goes from +ico — § for a fix ¢ satisfying 6 > n > 0.

Proof. We start by scaling pi:

(,Q+iP ,Q—iP") _ 2. Q —(a,Q+iP',Q—-iP) 2_ Q. —£_—(a,Q+iP ,Q—-iP’)
(oo-111) = ST (o yio i) = ST e T H Y /o)
Therefore:
00 _2iP 4 NPT 2 o -« oo _2iP Sl pl
,Q+iP,Q—iP (a,Q+iP’',Q—iP")
/ o HGST )d’“:*F(*)“‘JW/ T G ey A
0 v 0
. o, —e_2AP _@yp=—(a,Q+iP’",Q—iP’)
— e ~ Y 27 (o3 )P
2271—]'—‘(7)/“0 [Re 2 H(17176iﬂ’7(03—%)) dUB

i (Xys T [ o= 9P @HIPQiP)
v ‘ iR (1,727 3) 1)

In the last step we have applied a cyclic permutation of parameters. We now use the exact formula for H
with B3 =a, B1 = Q +iP', fo=Q —iP, 01 =03 =<, & = ¢i™(@2=%) One gets:

T2 po
gerra-ipy _ o TITIOE DT BEEON, (@ - 9T (P + HT3 (513 (Q— § +iP)
(L7273 1) P(1—%)7%T(2)  T3(QT3(Q - )Ty (iP)T3(—iP)S3(Q + %5 — 02)53 (%)
/ 53(Q+ 5 — 02 +1)53(5 +7)53(Q ~ § +71) Gin (5 Qo) 4T
c S3(Q+iP" +1)S3(Q +1)Sz(Q + ) i

Let us check the parameter in order for the integration defining H to be well defined. The condition is
Re(Q — o3 + 02 — %) > 0 which translates given our values of f8;,0; to the condition Re(og) > 0. For this
purpose we will consider the following quantity
277(0'2—%)PF(Q+iPl7Q_iP/1a)

lim e .
(LeW'Y(GQ—%) 1)

dUQa
e—0 iR+e

where at fixed € > 0 it is possible to use the above integral expression for H. The next step will be to justify
that we can exchange the order of integration of the two integrals over o5 and r.

For this purpose we will also consider a small modification of the contour C over the r variable. For a
small § > 0, we consider Cs5 which goes this time from +ico — 4, and in between passes to the left and right
of the poles of the integrand similarly as C.

We will now show the following lemma that allows to exchange the order of integration:

For a € (0,Q), P’ € R, P € R + in and for fixed 7, €, § satisfying ¢ > 0, 6 > n > 0 one has

(5.11) / dag/ dr |Z(r,o2)| < 400,
iR+e€ Cs

where we have used the notation:

o ezm;’%)p S:(Q+ 4 —oat )82 (g +71)52(Q— g + mem(%_mw-
S1(Q+ 5 —02) S1(Q+iP +1)S1(Q+7)Sx(Q+7)
For proving (5.11), it suffices to show that |Z(r, 02)| decays exponentially as Im(r) or Im(o2) goes to +oo
or —oo. To this end, we use the asymptotics of the double sine function as noted in (B.1). Recall a, P’ are
real. We note that

. ip! zP! iP’ em(e=Nm(@2)  as Tm(og) — 0,
‘ewr( 12) 7Q+02)r| — eTpéeﬂ‘Im(’l‘)(Qfé)67{'111](0’2)57 |S% (0_2 o 7)| ~ (e D)Im(oa) ( 2)
2 emlemz)imlo2) - as Tm(og) = —o0,
and,
1P’ crem™(F0=OIm(r=oz2) 4 Im(r — o2) = o0
57 e ~ Y
| ;{ (Q + 2 02 + T)| {626—7{'(2—6—6)111'1(7"—02) as Im(fr' — 0'2) — —0Q.

(5.12) S3(5+71)53(@—5 +7) em =3 a5 Tm(r) — oo,

' Sy(Q+iP' +71)Sx(Q+71)Sx(Q+7) e~ m(0=3Q)m(r) a5 Im(r) — —oo.
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By our assumption, P = Re(P) + in which implies |exp(27(oy — %)P)| ~ exp(—27rIm(c2)n). In what
follows, we use the above asymptotics to find the decay of Z(r, 02) as Im(r),Im(os) — +oo.

In what follows, we study the asymptotics of Z(r, 03) in eight different possible cases based on the relative
growth of Im(r) and Im(cs). In all cases, we use the asymptotics such that there

e Im(r) = +oo, Im(o2) = +o0, Im(r — 03) = +00
|Z(r,09)| ~ e~ 2rIm(regnim(o2)(20+2e=21-Q)
e Im(r) — +oo, Im(o) — +o0, Im(r — 09) = —o0
(Z(r, 03)| ~o €7Im()(26-Q) —27Tm(z2)n
e Im(r) — +oo, Im(03) — +o0, Im(r — a3) — C

|Z(r,02)| ~ e Im(r)(6—e—§) ;rIm(02) (6+e—§ —2n)
b Im(r) — —00, Im(Uz) — —0Q, Im(r — 02) — +00

|I(r, 02)| ~ ™M (r)(3Q—2¢—26) ,wIm(02)(26—2n)

e Im(r) - —o0, Im(oy) = —o0, Im(r — 03) = —00

|I(’/‘, 0_2)‘ ~ 627TIII1(T’)Q67TIII’1(O'2)(Q72672’I7)

e Im(r) —» —o0, Im(oy) = —o0, Im(r — 09) — C

1Z(r, 0)| ~ e-rrlm(r)(gQ—e—é)eﬂ-Im(ag)(S—e—&-%—2n)
e Im(r) = +oo, Im(o2) = —o0, Im(r — 03) = +00

|I(’I", 0_2)‘ ~ 6727r1m(r)ee7rlm(02)(267277)

e Im(r) —» —oo, Im(o2) = +oo, Im(r — g3) = —o0
|Z(T’, 02)| -~ 6271'Im(r)6267271'Im(02)77
Combining the asymptotics in all of these above cases shows that for ¢ > 0 and § > n > 0, there exists

C, c1,c2 > 0 such that
|I(T', 0_2)| < Ce—cl\lm(r)|—cQ|Im(0'2)\.

Now (5.11) follows from the above display via Tonelli’s theorem.
Using the above lemma we can exchange the integration over r and ¢ and compute the integral over os:

S3(Q+ % —oa+7)
S1(Q@+ U —03)
_ o~ TQP—P'r+ixPP' —inQr / doroei™2(2iP=7) S3(@+02+7)
= g92€ —a A N
iRte S1(Q +02)
Q+r)Sy(iP —r)
S% (Q+1iP)
S% (Q+ T)S% (iP—r)
S% (Q+iP) ’
where in the second equality we shift the integration over oy (which is clearly valid since P’ is real) and in
the third equality we use the hyperbolic beta integral from Lemma B.1 with « = Q + 7, 8§ = iP — r. The
three conditions Re(@ + r) > 0, Re(iP —r) > 0, Re(Q + iP) < @ are valid since r € C5, P € R + in and
0 > n > 0. Putting everything together we obtain the desired claim.

Finally lets us check here the convergence at r — =+ioo of the integral in the right hand side of Lemma
5.7. We compute the asymptotic of the double sine function in the integrand:

. i ’
/ d0_2627r(z727%)Pezﬂ(%7Q+ag)r
iR+e

L _ 7 . o im 2 I Sl(
= je TQP—nP r+17TPPe 177Qre2(aQ «a )e Tiaf 2

. ’ . Y 2_ .
— je 7P r+in PP e (—Qr+r*—2riP)

(5.13) Sy(5+7)53(Q@—35+7) {clei% as  Im(r) — oo,

S (Q+iP +7)53(Q+1)S3(Q—iP+7)  |caeiFM  as Im(r) = —oo.
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where here Ay = —r2 + 7(2iP + 2iP’ — 3Q). Therefore:

(5.14)
—iZA;

S%(% +T‘)S%(Q -3 +7)
S%(Q—‘y—ipl +7“)S%(Q+T)S%<Q —iP+7r)
Here Ay = —2r? + r(4iP — 2Q) and Az = r(4iP’ — 4Q). We assume that P’ is real but that P can have

a small imaginary part in. Also let us still assume that » = ilm(r) — §. Based on the values of Ag, Ag, the
integral is converging. O

as Im(r) — oo,

77TP,T6%(7QT+T272TiP) ~ cie
Ag

coel® as Im(r) — —oo.

We will now express the integral in the right hand side of Lemma 5.7 as a constant times the modular
kernel. This is given by the following lemma:

Lemma 5.8. Consider a € (0,Q), P € R+ in for a fixed n > 0. Then the following identity holds
1 o _2iP _q sl _ip!
torus N (o, Q+iP",Q—iP")
M (P, P = [?2/0 By H(#Oyﬂg,m) dpa,
where Bs is as in Proposition 5.6.
Proof. Applying Lemma B.7 to the output of Lemma 5.7, we find that:

> _g_lH(a,Q—HP’,Q—iP’)d -B e%f(Au,QPp') S%(_ipl +Q - %)S% (Q - %)
H (ko,po,11) H =53 5:(Q - ¢ —iP)
2

I.(P,P).

On the other hand we also have that:

, s ymiPly s
MES(P, Py = Clmew sin(+5— )s;n(
Ay po(a) S+(3)

This implies the claim of the lemma. O

To finish the proof of Proposition 5.6 we need to justify the exchange of the integral over p; and the
integration over P’. This is provided to the following lemma.

Lemma 5.9. In the parameter range « € (0,Q), ¢ € (0,1), P € R+ in, n > 0 one has:
> _QEYP > (a,Q+iP’,Q—iP') ~1 P'2 Ltorus (~ 1t /
dpa piy Hio o) g2t FM(q, P')dp
0 —00

oo , oo __2iP (a QJriP, inP/)A«l P2 ~ /
=/ dp (/0 dpapy " Hp ’ qz f&””s(qap))-

(k0,100511)
—0o0

Proof. One needs to show:

0 _2iP " . , "
SB[ i G R F ) < o
To show this one simply needs to use the fact that
lim H(@QHP Q=P _ pr(a.Q+P .Q—iP")
11 —0 (k0,1005141) (k0,10,0) ’
and the fact that:
(a,Q+iP’ ,Q—iP") _ =% 17(,Q+iP’,Q—iP’) - -5 17(0,Q+iP’,Q—iP’)
H g, j10.10) =t H e g i Yoo M1 Hio ) :

ay 21

Using this asymptotic the integral over u; is always convergent at 0 and at infinity it behaves as C’ul_ T
and so one needs to assume « € (v + 2n,Q) for it converge. For 7 this interval is non empty since one
has 7 < Q. One can then check the integration over P’ is converging by using the bounds on the special
functions. O

Finally we had assumed P € R +in, n > 0. Since the left hand side of (5.10) is continuous in P in a
neighborhood of R, one can clearly take the limit n — 0 and obtain the desired result for P € R.
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5.3. Analytic properties of the modular kernel. The modular kernel M2"(P, P’) given in (5.3) in

the previous section involves the integral formula I,,(P, P’) which is only converging in the parameter range
Q > @, —-Q + RET(O‘) <Im(P) < Q — Re(a . In order to extend the 1-point torus conformal block to
a meromorphic function of P, it will first be necessary to extend the modular kernel to a meromorphic
function of P € C, fixing all the other parameters in some appropriate range. We will also show the modular
kernel has poles at P = P, ,, with residues satisfying a certain identity. This is the content of the following

proposition.

Proposition 5.10. Fix v € (0,2), a € (0,Q), and P’ € R. The modular kernel P — M, (P, P') is a
meromorphic function over C with poles at P = P, ,,. Furthermore it obeys:

(5.15) Resp_p, , MM (P, P") = d(m,n, P)MP"(P_,, n, P').

m,n

In order to prove this result, we will show that the modular kernel obeys certain functional equations
known as shift equations. Consider the function M, (P, P’) related to the fusion kernel by the relation:

.A%P/,(J(Oé) ew.
Ay.po(a)
We know give the following lemma on the function M, (P, P’).

My (P, P") = M, (P, P)

Lemma 5.11. Fix a € (0,Q) and P’ € R. The function P — M, (P, P") can be meromorphically extended
to C. For both xy = 3 or %, it obeys the following functional equation:

sinTx(iP + §)
sinmxiP

sinTx(iP — §)

My (P —ix, P') + My (P +ix, P') = 2cos(nxiP’) My (P, P').

sinmxiP
Proof. Assume a function f(P) is a solution to:

%)) F(P —iy) +sin(ry(iP — %)) F(P +1iy) = 2cos(ryiP’) sin(mxiP) f(P).

Using Fourier transform we can write f(P) as

f(P) = /c de™PE f (¢

sin(my (iP +

where C is some appropriate contour going from —ico to +ico and now try to identify the function f(€).
The above functional equation then becomes:

(=82 e o242 mer) / dee? P f(g) 4 (= =H2m Bt / dge>m(PHE f ()
C C

= 2cos(mxiP’) (G_WXP - ewxp) / dge”™ S f(9).
c

We now move the contour C to get:

[ A ——)
C

[ [ D )] -
C

By taking the inverse Fourier transform this implies the following equation on f &):

. cos(T3* + 2mx(§ — %)) — cos(mxiP’) ,
f&+ X) B COSE”X“ 27T§E§ + % 2;; — cosgw;ilP’%f(f B g)
_ sin(Sj® 4 (€ §) — dmdP)sin(He 4 (€= 3) +EmiP)
sin(7* — mx(§ + ) — gmdP’) sin(Tf* — mx(§+ §) + gmiP’)
sin(TX2 4 mx& — LaxiP’) sin(TX + 7x€ + $mxiP’) .
sin(TX2 — x (€ + x) — $mxiP)sin( T2 — ox (€ + x) + %WxiP')f(E)'

= f(€+x) =
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Lets check that the integrand of I, (P, P’) obeys the same relation. For this we will use the functional
equation (A.6) on Sy. Thus let:

Then we can compute that:
o€+ x) = Si(E+5+x+95; (5 +§-x-9)
5%(Q+1§/—2+X+f) %(Q+I§I—Z—X_f)
sin(9F + T 4 myg) m@ﬂJWww

sin(my2 + DI TX@ 4 ) sin(TEE 4 TXO a2 rye)

©)

This matches the relation for f and thus we have checked the first shift equations. (]
Remark. It is also possible to derive the following extra three shift equations:
sinmx(iP' — x+ %) sinmx(iP' 4+ x - %)
sinmy(iP’ — x) sinmy (1P’ + x)

1 1
Mooy (P, P +1ix) — Mooy (P, P —ix) = 2M, (P, P'),

M, (P, P’ +ix) + M, (P, P’ —ix) = 2cos(mxiP)M, (P, P'),

sinTy(iP’ — x) sinTx(iP’ + x)
1
——— (M, (P —ix, P') — M, (P +ix, P")) = 2M, PP
Srmip (Mo(P = 5 P) = Mo(P o+ 5. P) = 2Mo oy (P. P
As they will not be needed in the present paper, we omit their proofs.

Using the shift equation we have established, we can now prove Proposition 5.10.

Proof of Proposition 5.10. Fix a < Q, P’ € R. The goal is to show that the function given by

Ay profe) e

’4%P70(04) ’

'y7r2iP' )

My (P, P") = M, (P, P")

27riP’)
T —1.(P, P"),

sin(
53(3)
iP’ a
I.(P,P") /df %(;+ 119505 Jrlpz,fi) ¢2mFe
S:(Q@+5 —F+)52Q+5 —F-9
which is originally defined under the parameter constraint Im(P) € [-Q + & a) ,Q— Be a)] extends to a

meromorphic function in P € C with poles at P = P, , and residues prescrlbed by the stated relation. To
prove this fact the two inputs will be the shift equation prove on M, (P, P’'), namely

sinmx(iP + §)
sin myiP

sin(

My (P, P) =

(S

)

sinmy(iP — §)

M, (P —ix, P') + M, (P + iy, P') = 2cos(mxiP") M, (P, P'),

sinmyiP

and the fact that the P dependence of the total prefactor in front of the integral is:
[2(Q— 35 —iP)I'y(Q — § +iP)

Iy Q- iP)F%(Q +1iP)

sinTx(iP + §)
sin 7TXiP
at x =7 and P = 7 we can derive My (P_1,, P") = My (P, P').
Actually it may be easier to just write the shift equation directly on the modular kernel. We can write:
F%(Q - iP)F% (Q+1iP)
I(Q-2—iP),(Q— 5 +iP)

p_a
M (P — iy, Py + SBTXOP = 5) ) b iy, PY) = 2 cos(miP') Mo (P, P')

sin mxiP

My (P,P")=C(v, P, ) M, (P, P)
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Using the notation g(P) = &

Q== FiP) and the shift relation of the double gamma function we
can obtain:
2ixP—x2 I'(x(Q — § —iP))
T(x(@— 5 +iP—x)’
72iXP7X2 F(X(Q - % iP))
I'(x(Q@ — 5 —iP —x))

g(P+ix) =x (P),

g(P —ix) =x g(P).

APPENDIX A. IDENTITIES ON SPECIAL FUNCTIONS

A.l. Gamma and double gamma functions. The gamma function is I'(z) = fooo t*~le~tdt for Rz > 0. In
particular, I'(n) = (n—1)! for n € N. It has meromorphic extension to C with simple poles at {0, -1, —2,---}
and satisfies I'(z + 1) = 2I'(z), the reflection formula

™

(A1) FzIri1-z = Sn(m2) for z ¢ Z,
For Re(z) > 0 the double gamma function I'y (2) is:
es} —zt __ el Q _ 2 _Q
(A.2) log 'z (2) ;:/ @[ e _ ez - (3 —2) oty P2
: o tll—e2)1—e7) 2 t

The function I'y (z) admits meromorphic extension to C which has no zeros and has simple poles at {—2* —
27”1 | n,m € N}. Moreover

1 _ 2
(A.3) I3z +x) = vV2mx¥* 3T (x2) 11"%(2') for x € {%, ;},

which implies

(x—x"1)=z
(A4) Ty (z+Q) =2r—2

; Tt =)z 3

For v* ¢ Q, T3 (2) is completely specified by (A.3) and I‘%(%) = 1. Other values of v can be recovered
by continuity. We also use the function

(A.5) Sy(z) =T1(x)I'2(Q - z)~h

and its functional equation:

(A.6) 7) = 2sin(myz), for x € {%, %}

The now give a lemma giving the asymptotic of S 1
Lemma A.1. We have that

lim 270G, (1) =1,
S(z)—o0 2

lim e 137@-Q) g, () = 1.
2

S(z)——o0

As a consequence it is easy to derive the following bound. Fix a € R away from the poles of S%. Then one
has:

1S3 (a+it)| < Caez!M@7201 vt e R,
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A.2. Convergence of contour integrals. Throughout this paper we consider in many places expressions
of the form
i +7)
drel™s
[ TSy
where the u;,v;,& can a priori be arbitrary parameters in C. Here we discuss how the contour C is chosen

and what are the conditions for the convergence of such integrals. Using the properties of the S 3 function,
we see that the integrand has a pole when:

mu wu

2
r=—Up - — —, er—vi—&—m—&——n, m,n > 0.
2 7 2 7

There is thus N lattices of poles extending to the left (in the positive co direction) and N lattices of poles
extending to the right (in the —oo direction). The contour C is then chosen to go from —ico to +ico, passing
to the left of the poles of the lattices extending to the right and vice versa. This will always be possible
except in the special case where there is a pole from one of the left lattices collapsing with a pole from the
right lattices, in which case the whole function has a pole. Let us now use the asymptotic (A.1) of Sy to
study the asymptotics of these integrals. Write r = it. First as ¢t — +o0:

ul—i—r ul—i—r
5]:[S“/ HS'Y ’U1+7“

We then get as t — 4o00:

o~ TtRe(E) o~ TtRe(6) Heg v} +(2it—Q)v; —uf +(Q—2it)u;)

N
e—TrtRe(E) H eTrtRe(ui—w)eglm(u?—v?).

i=1

17rr£
H Sw (vi +7)

The condition for convergence of the integral are thus:
ZRe(ui —v;) —Re(§) <0, ZRe(vi —u;) —Re(&) > 0.

We will also need the following lemma.

Lemma A.2. For fixed parameters £, a, b, ¢ consider the function:
/ @ei”g Sy(a+71)Sx(b+7)
c i Sy(c+7)S2(Q+7r)
The parameters need to obey the constraint above namely:
Re(a+b—c)—Q—Re(§) <0, Q+Re(c—a—0b)—Re(§) >0
Assuming the parameter are such that this condition holds one then has the following asymptotics, first as
Im(§) — 400

S3(a)S3(b)
Sy (c)

[N/

(1+0("7)),

and as Im(§) — —oo:
S’%(b)S%(b—a) S%(G)S%(a—b)
Sy(c—1b) Sy(c—a)

Note that when Re(a) > Re(b) then the term with e =™ is the leading term and for Re(a) < Re(b) it is the
term with e~7ia¢,

—ribe

(1+0(e” 5 )) + e~ ™as (1+ O(e*¥)).

In order to perform the identification of the following section, we will try to match the poles of both sides.
Therefore we need to determine the poles of the meromorphic function given by:
Sy(+ 2485 (i + 4
Ia(P, Pl) = / dé— (IP/ 5) ( lP/ i) 6271'1357
c 53(Q+7% —7+5>Sv(Q+ -5-9
For this purpose we must now specify how the contour is chosen. The contour C of the integral goes from
iP’ e} 2 iP’ e

—i00 to ico passing to the right of the poles at r = =%~ — § —nd — ms, =15 — G- ng — m% and to
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the left of the poles at r = % +4+ng+ m%, r= —% +4+n3+ m%, with m,n € N2. Let us check
the convergence of the integral at +ico. For this, by Lemma A.1 we find that as £ — 4ioco the integrand
of the above integral is equivalent to ¢;e2™7¢ei™ (2@~ for some ¢; € C independent of &. Therefore this
imposes the constraint 2Q) — Re(«) + 2Im(P) > 0. Similarly for £ — —ioo, the integrand is equivalent to
Ccoe?™PEe—imE(2Q=9) for some ¢y € C independent of &. This gives the constraint 2Q — Re(a) — 2Im(P) > 0.
These constraints can be summarized by the conditions

Re(a)

Re(a) Re(a)
2 Q-

©> 2 2

Im(P) € |—Q+

If we wish to extend the exact formula for the modular kernel to a meromorphic function of all of its
parameters to the whole complex plane we need to use the shift equations.

A.3. Asymptotics on special functions. Our estimates will be based on the following asymptotic:

Lemma A.3. Fix v € (0,2), a,b € C with a # —2* — 2 for any integers m,n > 0. Then for P € R one

2 vy
has
F%(a+‘1P) < CecIPl1og | Pl
F%(b-l-lp)

where C, c > 0 depend on ~, a, b but not on P.

Proof. We will prove this bound by directly using the integral formula for the double gamma function which
we recall now.

N e S e e
(A7) F;r(x).—exp</0 t[(l—ewzt)(l—e_it)_ 5 € + ; ])

This formula is valid as long as Re(x) > 0. Without loss of generality we can assume a,b are real. By the
using the shift equations of the double gamma function, we can also assume that 0 < a < b. From here we
can write that:

I'y(a+1iP) ~ exp </°°dt [ (emat — e=bt)e 1Pt (a—b)(Q—2iP—a—b)67t+ a—b]>.
0 |

. : — +
Iy (b+iP) t |[1—e¥)1—e %) 2 t

Since 0 < a < b, for large ¢ the integral is converging and should at most contribute as ¢|P|. Let us now
look at how the integrand behaves for small t. We first write:

—at _ ,—bt) ,—iPt _ _ 9P —a— _
(e e e +(a b)(Q — 2iP —a b)e_t+a b

(1-e2)1-e ™) 2 t
_—— L o()(1—iPt+ o(t) (1 + Lt + () (1 + ~t + oft
= Ho—a+ (5 = D o)1= 1Pe+o®)1 + T+ o)1+ e+ of0)
+(G_b)(Q_;lP_a_b)a—t+o(t))+a_b=o(1).

At the next order we will see the integrand is converging at ¢ = 0. We only have to worry about the P2
2
term. In the above expansion it should appear as —%(b — a)%t2 and give a total contribution of the form:

odt1 P2 (a=b)rg P
exp / (a—b)t2> =e 2z .
< o bt 2

By assuming b > a which is possible using shift equations, this argument seems to conclude the proof. O

APPENDIX B. IDENTITIES ON HYPERBOLIC HYPERGEOMETRIC FUNCTIONS

This appendix summarizes some integral identities on hyperbolic hypergeometric functions used in [PT01]
and [Tes16] and originally coming from the thesis [vdBO07].
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B.1. Hyperbolic beta integral. The first identity we will use is the following hyperbolic beta integral.

Lemma B.1 ([PT01, Lemma 15]). Consider «, 8 € C satisfying the conditions Re(a) > 0, Re(8) > 0 and
Re(a+ 8) < Q. We have that

/loo dr o ﬁ62<f+a>(r+a Q) Si(7+a)  FH-QFAB-Q) S3(a)S3(6)

(T+Q)  eF@HBts-Q  Sy(a+f)

|2

Z d e 2 T(TJ"Q) S

R |l

—ioco

which implies

1/ dTemTﬁe%(rm)(rm—Q) Sy(r+a) T (6?=aQ+5°=5Q) Sy (a)S5(B)

i J; QAT Sy (T+Q) eFlath(ath-Q) S%(a B)
S’Y(T+ ) ie%"a(Qfoc)efiﬂ’aﬁ %( ) (6)

Sv(T—‘rQ) S%(Oé‘Fﬁ)

The contour in 7 is the imaginary axis, shifted slightly to the half space of negative real part to avoid the
pole at 7 = 0.

(NSNS}

= / dTe27riTBeiﬂ'T(a

Lets look at the behavior as 7 — +ioco of the above integral over 7. Using the asymptotic of the double
sine function we obtain:

Sy(t+a) {eigo‘(Qa)ez””ﬂ as Im(7) — oo,
S

B.1 eQ?T’iTﬁeiﬂT(an)i ~ o ) )
( ) (T+Q) eTa(a—Q)€27,7TT(OA—Q)627TlTﬁ as Im(T) 5 —00.

By using these asymptotics, the integral converges at 7 — +ioo if and only if Re(8) > 0. The integral
converges at 7 — —ioco if and only if Re(a + 8) < Q.
Notice also the integrand has poles when 7 equals any of the following:

[N SIN NS

For Re(a) > 0, the contour can be chosen as the imaginary axis avoided the pole at the origin. For more
general a the contour would be more complicated..

B.2. Hyperbolic special functions. The next class of identities we will use are the transformations of
hyperbolic hypergeometric integrals in Lemmas B.6 and B.5, which were derived in [vdB07] by degenerating
a symmetry of the general hyperbolic hypergeometric integral under the action of the E7 Weyl group. For
the reader’s convenience, we now give a brief primer on hyperbolic hypergeometric functions to make explicit
how to extract them in this form from the original source.

The hyperbolic gamma function is defined for wy,ws € C with positive real parts by

[ sin(2zt) z \dt
B.2 ; = — — .
(B.2) Gz, wz) = exp (1/0 (25inh(w1t) sinh(wat) wlwgt) t )

Recalling that the double sine function is defined for 0 < R(z) < @ by

Sy(z) = exp </OOO ( Si.nh((Q/2._ ) Q- 2z)dt> )

2sinh(7t) s1nh(%t) t t
we find that
) ol 2 sin(i(Q — 2z2)t) i(Q/2—2)\dt
G 2—2);=,-)= — —
(1(Q/2=2); 2’ 'y P 2smh (21) smh(% ) t ) t
= exp

( / sinh((@ —22)t) Q/Q—z)dt)
o \2sinh(Jt) smh(% ) t t
( smh (Q/2—2)t) Q—22>dt>

P /0 2sinh(7¢) sinh(1t) t

— S 0(2) 7,
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where we use that sinh(z) = —isin(iz) in the first equality and we make the change of variables t/2 — ¢ in
the second equality. This implies that

G7/2.2/7) = S3(2

5 +iz)7!

For any u € C8, define the integrand
. 8 . .
G(i§ £2237/2,2/7) i Sy (9 +iu; +iz)
[ Glu; £ 27/2,2/7) Sy (+2iz)

The univariate hyperbolic hypergeometric function from [vdB07, Section 4.4.2] is defined for generic param-
eters u lying in

(B.3) Dy = {u|us + -+ ug = 2iQ},
and (u; — %1) < 0 by

Iy (u, 2) ==

(B.4) Sh(u) ::/th(wz)dz

and admits meromorphic extension to all u satisfying (B.3). This function obeys the following transformation
symmetry under the action of the E7 Weyl group W (E7) on D,. The identities of interest in this work will
be certain limits of this transformation symmetry.

Proposition B.2 ([vdB07, Theorem 4.4.1]). The univariate hyperbolic hypergeometric function is invariant
under permutations of u and satisfies the symmetry

Sn(w) = Sp(w-u) [ Sy(-iu;—iw)™ [ S(—iu; —iux) ™",
1<j<k<4 5<j<k<8

where w is the reflection about the hyperplane normal to (1,1,1,1,—1,—-1,—1,—1).

The core objects we will use are two limiting versions of the univariate hyperbolic hypergeometric function.
For u € D, satisfying I(u;) < %, define the hyperbolic Barnes integral by

i S1(Q/2 +iu; + iz
(B.5) By (u) = 2/ H]—l,?,?,s 1 (Q/ : J : ) .
R Ilj=3456952(Q/2 —iu; +1iz)
Similarly, for v € C° satisfying %(Z?_ v;) > @, define the hyperbolic Euler integral by

/H] 1S’v Q/2+1u7 )d
Sy (£2i2) :

(B.6)

The Barnes integral

Proposition B.3 ([vdB07, Proposition 4.4.7]). We have that
By, (u) = Bp(w - u) H H Sy (—iuy —iug)” ! S%(—iuj—iuk)_l,
j=1,2k=3,4 §=5,6 k=78

where w is the reflection about the hyperplane normal to (1,1,1,1,-1,-1, -1, —1).

These two limits are related by the following transformation identity, which is a limiting version of
Proposition B.2.

Proposition B.4 ([vdB07, Theorem 4.4.11]). For u € D,, satisfying S(u; + ug) < Q, we have
By (u) = Ep(ug — s,ur — s,ug — S,u3 + 8, uq + 8, us + ) H Sw (—iwg —iuj)~ H Sw (—iug —iuy)~ 1
Jj=3,4,5 7=2,7,8

for

1
S:§(U2+U6+U,7+U8)—i%.
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B.3. Transformations of hyperbolic hypergeometric functions. We now derive two limiting conse-
quences of Proposition B.4 which are used in [Tes16]. Although these may be specialized from more general
principles in [vdB07, Section 5.6], we derive them explicitly here for the benefit of the reader.

Lemma B.5 ([Tes16, Equation (B.19)], [vdB07, Theorem 5.6.14]). For parameters p1, pz, pi3, v1, v2 € C, for

B _Q Iy i A=y =, @
(B.7) J.—ifig,uifiyz an ,7;Mi+§yi,57

we have that

3
(B.8) 2 / dyﬂsg(mfy)]'[sg(yﬁy)emyef%m
‘ i=1
. . . 1., 52 (Mz-l-a:ty)Sw(Vl—a:I:y) .2
_ S'Y ; 2#1)\2 %leZ —%TI'IQ(A—"-I/l)/ d —27iy )
H H (ks ¥ v2)e ‘ ‘ iR Y SW(iQy)

Proof. Set

w= (i +HiQ/2, —in +HQ/2, iy +iQ/2, ~iuaHiQ/2, ~ipsHQ/2, ~ipui+iQ/2, —ivs+HQ/2, ~ivs+iQ/2)
+5(0,0,0,0,0,2,—1,—1)
and take the S — oo limit of the identity of Proposition B.4 multiplied by

7171'5' —m(2patvst+rva—2Q)—i% (V4+V3 u4+Q(p,4 v3— V4))

On the LHS, by Lemma A.1, we obtain

2 3
Q/HS%(VJ iz HS% —iz)e3 (3@ 22— 2ue)2—i5 = dz.
Rj=1 j=1

For u to lie in D,,, we must have that 4iQ — iZf,l(ui + v;) = 2iQ and hence

2 30
pa+v3+ vy =20Q — Zlh ZVZ *—)\

i=1 =1

Substituting and changing variables to y = iz, we find

2 3
i [ TI8305+ 0 18300 - e ™57 ay,

Ry j=1
On the RHS, note that s = —io. Thus, by Lemma A.1, we obtain

HSg vy + pi)e” FTN e zmQ<A+u1)/H

=1

=152 (1 + 0 £12)Sy (1 — o £iz)

—2imrz?
d
Sy (£2iz) € =
2

which after a change of variables to y = iz becomes

3
—IHSV Vz—l—u)e 27r1>\ e SszezmQ(z\—i-Vl
=1

s 2
e2171'y dy

/ 171 Sz (pi+ 0 £y)S3 (1 — o £y)
Sy (+2y)

Taking the complex conjugate of both sides yields the desired identity. ([l
Lemma B.6 ([Tesl6, Equation (D.32)], [vdB07, Theorem 5.6.17]). We have that

S~ -‘r— + .
(B.9) 2/ dz (5 —n ) glmicz
iR

2 + T EpEtlty)
Sg(ﬂy)

—27iy?
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Proof. Choose the parameters
u= (iQ/4 +im/24+1,iQ/4 — ip — im/2,iQ/4 + ip — im/2,iQ/4 — ip — im/2,
iQ/4+4im/241£,iQ/4 +im/2 —i&,iQ/4 +im/2 — i€, iQ/4 + i — im/2)
+5(-1,0,0,0,1,—1,1,0)

and take the S — oo limit of the identity of Proposition B.4 multiplied by e™?"+@5  On the LHS, by
Lemma A.1, we obtain

2/S%(Q/4iu+m/2iiz)e_4”fzdz: —2i/ S%(Q/éli,u—l—m/Ziy)eMigydy.
R iR

On the RHS, applying Lemma A.1, we obtain

S:(Q/4+tp+m/2EE£iz)

€2i7rz2dz
Sy (£2iz) ’
2

627ri(§2_(%+%)2+u2)5% (Q/Q —m+ 26) /
R

which after the change of variables y = iz becomes

—2i71'y2 dy

02 m\2 2 (Q/4iu+m/2i§iy>
i@ (FHE) 10 6 (Q/2 — m + 2 /
2( / ) iR S”(jﬁy)

Matching the two expressions completes the proof. O
Lemma B.7. The following identity holds:

imr?

/ Sy (% +7)595(Q — % +7)S3(iP —r)Sy (—iP' — r)s%(—r)eiM@P*iP*%e > dr
iR

o S( + +§)S%( ,+%_§) 27 P¢
C/ ngvQJr‘P'—erf)S% o

where C has expression given by:

¢ = Fbapp) 53T+ Q- 5)5; Q- 5)
53(Q—§ —iP)

Proof. We first apply the complex conjugate of Lemma B.5 with the parameters

/’(‘1:7;P7 /’('2:_ipl7 ,U/3:O, 1/1:%7 VQZQ_%7 )\:zP_ZPIJ'_%
With this choice the balancing condition (B.7) is satisfied for o = & - 2 4 & This thus transforms the
LHS of the desired identity into

253(P+Q = )83 (—iP +Q = 5)53(Q = J)em FmP TP T il hmaGr P g

. Sy(iP + 0 £y)S3(— zP’—&—aiy)Sg( +y)S1(5 —o+y)
/ﬂR Y 53 (£29) ‘

—Sw(zPJrQ—*) S (P +Q = 5)53(Q = 5)e hriPmiP 48 ki@ dmiQP =P+ 3 +4)

[ S 2
%()

We are now going to apply Lemma B.6 with parameters m = § —

w|lQ

, = ——, &= 1P. This gives

+ , , (2P ,
/ dz }j/_ Z) eQﬂ'Pz _ lewz(%Q+%+P22)Sl (Q _ 9 + ZP)/ dyS;(4 2 2 y) eQTrzyz.
i Sw QJrZ -9 £2) 2 2 2 iR S%(:I:Qy)
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Therefore this implies the claim of the lemma for the constant:

- (o] - / (e} (o]
_ S3(P+Q - 3)S3(=iP +Q - 5)5;(Q — f)e—m(%2+%f+i§2 o= bmiP—iP'+9)? ~1miQ? (A miQ(iP—iP'+ $+%)
S, (Q-S+iP)S;(Q-5—iP)
S%(fipl +Q — %)Sz Q- %

L p2 2
= 2 )677TZ(PT+%+P2

- €
53(@— 5 —iP)

—1mi(iP—iP'+9)?

eféﬂine%ﬂiQ(iniP’Jr%Jr%). 0

Remark. On the right hand side the integral converges at +ico if the parameters obey the condition:

Re(a Re(a Re(a
Q>L, Im(P) € |-Q + (),Q*Q
2 2 2
Also the contour C of the integral goes from —ioco to ioco passing to the right of the poles at r = —% — 3
n%—m%, r= %—%—n%—m% and to the left of the poles at r = %+%+n%+m%, r= —%+%+n%+m%,

with m,n € N2. Let us check the convergence of the integral at +ico.
These conditions should somehow to contained in the identities we are citing to prove this result.
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